86.9%; 1H NMR (300 MHz, D2O) δ 1.37–1.38 (m, 4H, 2 ×
CH2), 1.79–1.81 (m, 4H, 2 × CH2), 3.08–3.15 (m, 8H, 4 ×
NCH2), 3.36–3.55 (m, 16H, 8 × NCH2), 3.70–3.74 (m, 4H, 2 ×
NCH2), 5.44 (s, 2H, 2 × methine H); 13C NMR (75 MHz, D2O)
δ 23.9 (CH2), 25.4 (CH2), 51.1 (NCH2), 53.2 (NCH2), 58.0
(NCH2), 60.0 (NCH2), 116.5 (tacnoa central C); ESI-MS m/z
[M − 2Br−]2+ calcd 181.25, found 181.15; Anal. Calcd for
C20H38Br2N6: C, 45.99; H, 7.33; N, 16.09; Found: C, 45.79;
H, 7.42; N, 15.97%.
Acknowledgements
We acknowledge support of this work by the National Science
Foundation of China (no. 20872061), the National Basic
Research Program of China (no. 2007CB925103) and the Pri-
ority Academic Program Development of Jiangsu Higher Edu-
cation Institutions (PAPD) for financial support.
References
1 (a) Y. Aiba, J. Sumaoka and M. Komiyama, Chem. Soc. Rev., 2011, 40,
5657; (b) B. Gyurcsik and A. Czene, Future Med. Chem., 2011, 3, 1935;
(c) J. H. Wen, C. Y. Li, Z. R. Geng, X. Y. Ma and Z. L. Wang, Chem.
Commun., 2011, 47, 11330; (d) J. J. Zhang and C. M. Che, Chem.
Commun., 2012, 48, 3388; (e) J. J. Zhang, Y. Shao, L. Wei, Y. Li,
X. Sheng, F. Liu and G. Y. Lu, Sci. China, Ser. B: Chem., 2009, 52, 402;
(f) R. E. Mewis and S. J. Archibald, Coord. Chem. Rev., 2010, 254,
1686; (g) D. M. Noll, T. M. Mason and P. S. Miller, Chem. Rev., 2006,
106, 277; (h) J. R. Morrow and O. Iranzo, Curr. Opin. Chem. Biol., 2004,
8, 192; (i) Q. Jiang, N. Xiao, P. F. Shi, Y. G. Zhu and Z. J. Guo, Coord.
Chem. Rev., 2007, 251, 1951.
2 (a) F. Mancin and P. Tecilla, New J. Chem., 2007, 31, 800; (b) Y. Shao,
X. Sheng, Y. Li, Z. L. Jia, J. J. Zhang, F. Liu and G. Y. Lu, Bioconjugate
Chem., 2008, 19, 1840; (c) M. Y. Yang, J. P. Richard and J. R. Morrow,
Chem. Commun., 2003, 2832; (d) L. Tjioe, T. Joshi, J. Brugger,
B. Graham and L. Spiccia, Inorg. Chem., 2011, 50, 621; (e) X. Sheng,
X. M. Lu, Y. T. Chen, G. Y. Lu, J. J. Zhang, Y. Shao, F. Liu and Q. Xu,
Chem.–Eur. J., 2007, 13, 9703; (f) J. T. Wang, X. H. Zheng, L. N. Ji and
Z. W. Mao, J. Coord. Chem., 2010, 63, 2440; (g) B. Gruber, E. Kataev,
J. Aschenbrenner, S. Stadlbauer and B. Koenig, J. Am. Chem. Soc., 2011,
133, 20704; (h) R. Bonomi, P. Scrimin and F. Mancin, Org. Biomol.
Chem., 2010, 8, 2622; (i) P. R. Reddy and A. Shilpa, Polyhedron, 2011,
30, 565.
Agarose gel electrophoresis assays
The plasmid DNA cleavage experiments were performed using
pUC19 DNA in Tris-HCl buffer. Reactions were carried out by
incubating DNA (0.025 mM bp) at 37 °C in 50 mM Tris-HCl–
5 mM NaCl buffer with a total volume of 15 μL in the dark for
the indicated time. All reactions were quenched by loading
buffer (3.5 μL) (30 mM EDTA, 0.05% (w/v) glycerol, 36% (v/v)
bromophenol blue). Agarose gel electrophoresis was carried out
on a 1% agarose gel in 0.5 × TAE (Tris-acetate-EDTA) buffer
containing 1.0 μg mL−1 EB at 80 V for 1.5 h. The resolved
bands were visualized with a UV transilluminator and quantified
using TotalLab 2.01 software. The supercoiled plasmid DNA
values were corrected by a factor of 1.3 on the basis of average
literature estimates of lowered binding of EB to this structure.33
Conclusions
3 (a) X. Sheng, X. Guo, X. M. Lu, G. Y. Lu, Y. Shao, F. Liu and Q. Xu,
Bioconjugate Chem., 2008, 19, 490; (b) H. Gao, Z. F. Ke,
N. J. DeYonker, J. P. Wang, H. Y. Xu, Z. W. Mao, D. L. Phillips and
C. Y. Zhao, J. Am. Chem. Soc., 2011, 133, 2904; (c) H. Hu, Y. F. Chen,
H. Zhou and Z. Q. Pan, Transition Met. Chem., 2011, 36, 395;
(d) A. Banerjee, S. Ganguly, T. Chattopadhyay, B. K. Sabnam, A. Patra,
S. Bhattacharya, E. Zangrando and D. Das, Inorg. Chem., 2009, 48,
8695; (e) G. M. Yang, J. Li, Y. W. Ren, H. Guo, M. Y. Duan, F. X. Zhang
and X. F. Zhang, Transition Met. Chem., 2009, 34, 191; (f) M. Laine,
K. Ketomaki, P. Poijarvi-Virta and H. Loennberg, Org. Biomol. Chem.,
2009, 7, 2780; (g) P. Maiti, A. Khan, T. Chattopadhyay, S. Das,
K. Manna, D. Bose, S. Dey, E. Zangrando and D. Das, J. Coord. Chem.,
2011, 64, 3817.
4 (a) L. J. K. Boerner and J. M. Zaleski, Curr. Opin. Chem. Biol., 2005, 9,
135; (b) Y. Zhao, J. Zhu, W. He, Z. Yang, Y. Zhu, Y. Li, J. Zhang and
Z. Guo, Chem.–Eur. J., 2006, 12, 6621; (c) A. Bodoki, A. Hangan,
L. Oprean, G. Alzuet, A. Castineiras and J. Borras, Polyhedron, 2009, 28,
2537.
5 (a) M. S. Muche and M. W. Göbel, Angew. Chem., Int. Ed. Engl., 1996,
35, 2126; (b) U. Scheffer, A. Strick, V. Ludwig, S. Peter, E. Kalden and
M. W. Göbel, J. Am. Chem. Soc., 2005, 127, 2211; (c) C. Gnaccarini,
S. Peter, U. Scheffer, S. Vonhoff, S. Klussmann and M. W. Göbel, J. Am.
Chem. Soc., 2005, 127, 8063.
6 (a) S. Ullrich, Z. Nazir, A. Buesing, U. Scheffer, D. Wirth, J. W. Bats,
G. Duerner and M. W. Göbel, ChemBioChem, 2011, 12, 1223;
(b) R. Salvio, R. Cacciapaglia and L. Mandolini, J. Org. Chem., 2011,
76, 5438; (c) Y. Shao, Y. Ding, Z. L. Jia, X. M. Lu, Z. H. Ke, W. H. Xu
and G. Y. Lu, Bioorg. Med. Chem., 2009, 17, 4274.
7 (a) S. H. Wan, F. Liang, X. Q. Xiong, L. Yang, X. J. Wu, P. Wang,
X. Zhou and C. T. Wu, Bioorg. Med. Chem. Lett., 2006, 16, 2804;
(b) M. Q. Wang, J. Zhang, Y. Zhang, D. W. Zhang, Q. Liu, J. L. Liu,
H. H. Lin and X. Q. Yu, Bioorg. Med. Chem. Lett., 2011, 21, 5866;
(c) J. Li, J. Zhang, Q. S. Lu, Y. Yue, Y. Huang, D. W. Zhang, H. H. Lin,
S. Y. Chen and X. Q. Yu, Eur. J. Med. Chem., 2009, 44, 5090.
8 F. J. Huo, C. X. Yin and P. Yang, Bioorg. Med. Chem. Lett., 2007, 17,
932.
In conclusion, 1,8-bis(1-dihexyloxy-1-azonia-4,7-diazatricyclo-
[5.2.1.04,10]decane)anthracene-9,10-dione dibromide 1, 1-methoxy-
8-(1-hexyloxy-1-azonia-4,7-diazatricyclo[5.2.1.04,10]decane)-
anthracene-9,10-dione bromide 2 and 1,1′-(hexamethylene)bis-
(1-azonia-4,7-diazatricyclo[5.2.1.04,10]decane) dibromide 6 were
prepared as metal free artificial nucleases. The interaction of 1, 2
and 6 with calf thymus DNA was studied by spectroscopic tech-
niques (fluorescence and CD spectroscopy). The results indicate
that compounds 1 and 2 have strong DNA binding affinity. The
binding constants of 1, 2 and 6 are 1.3 × 107 M−1, 0.8 × 107
M−1 and 8 × 105 M−1, respectively. The DNA cleavage
promoted by 1, 2, 6 and parent tacnoa under physiological con-
ditions was studied by agarose gel electrophoresis, which gives
the observed rate constants kobs of 0.2126
0.0055 h−1
,
0.0620
0.0024 h−1, 0.040 0.0007 h−1 and 0.0043
0.0002 h−1, respectively. The 50-fold and 15-fold rate accelera-
tion over parent tacnoa because of the anthraquinone moiety of
compound 1 or 2 intercalating into DNA base pairs via stacking
interaction. Moreover, DNA cleavage reactions promoted by
compound 1 give 5.3-fold rate acceleration over that of com-
pound 6 despite the fact that both of them have two tacnoa units.
This further demonstrates that the introduction of anthraquinone
in compound 1 can result in a large enhancement of DNA clea-
vage activity. Compared with 2, compound 1 exhibits higher
DNA cleavage activity due to the cooperative catalysis of the
two positively charged tacnoa units. The radical scavenger inhi-
bition study and ESI-MS analysis of APA and BDNPP cleavage
in the presence of compound 1 suggest the cleavage mechanism
would be via a hydrolysis pathway by cleaving phosphodiester
bond of DNA.
9 (a) Y. Feng, S. Cao, A. Xiao, W. Xie, Y. Li and Y. Zhao, Peptides, 2006,
27, 1554; (b) Y. Zhang, M. Q. Wang, J. Zhang, D. W. Zhang, H. H. Lin
and X. Q. Yu, Chem. Biodiversity, 2011, 8, 827.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 8484–8492 | 8491