Please do not adjust margins
Page 9 of 11
New Journal of Chemistry
Journal Name
ARTICLE
1
2
3
4
5
6
7
8
9
monomine as a brown solid (90% yield).37 1H NMR (300 MHz,
CDCl3) δ: 12.83 (s, 1 H), 8.63 (s, 1 H), 7.47-6.77 (m, 8 H), 3.79
(br, 2 H).
3
4
DOI: 10.1039/C9NJ01159E
11137.
B. I. Kharisov, O. V. Kharissova, A. Vazquez Dimas, I. Gomez
De La Fuente and Y. Pena Mendez, J. Coord.
Chem., 2016, 69, 1125-1151.
E. Guibal, T. Vincent and R. Navarro, J. Mater. Sci.,
2014, 49, 5505-5518.
J. Choi, H. T. Kwon and H.-K. Jeong, MRS Adv., 2017, 2, 2497-
2504.
M. Cavallini, M. Facchini, C. Albonetti and F. Biscarini, Phys.
Chem. Chem. Phys., 2008, 10, 784-793.
A solution of 2-mexylamino-4-methylamino-6-[(4-hydroxy-3-
formylphenyl)amino]-1,3,5-triazine 1 (0.364 g, 1.00 mmol) and
salicylaldehyde 2-aminophenyl monoimine (0.212 g, 1.00
mmol) in dry ethanol (10 mL) was refluxed for 3 h. The solvent
was evaporated under vacuum to afford a residue, which was
reprecipitated from hexane/ethyl acetate to give 477 mg
(0.817 mmol, 81%) of the ligand 10 as a red solid. Tg = 69 °C;
FTIR (KBr/CH2Cl2) 3392, 3274, 3221, 3061, 2959, 2918, 1614,
1572, 1514, 1487, 1428, 1396, 1320, 1299, 1275, 1213, 1184,
1152, 1130, 1116, 1104, 1035, 976, 939, 907, 883, 840, 750,
685, 646 cm-1; 1H NMR (400 MHz, DMSO-d6, 363 K) δ 9.97 (s, 1
H), 8.98 (br s, 1 H), 8.52 (br s, 1 H), 8.32 (s, 1 H), 8.11 (d, 1 H),
7.49 (m, 2 H), 7.37 (s, 2 H), 6.65 (br s, 1 H), 6.63 (s, 1 H), 2.90
(d, 3 H), 2.25 (s, 6 H) ppm; 13C NMR (75 MHz, DMSO-d6) δ
166.6, 165.9, 164.5, 160.8, 156.1, 142.8, 140.6, 137.5, 133.9,
132.9, 132.4, 128.7, 123.6, 120.20, 119.9, 119.5, 119.1, 118.1,
117.1, 116.8, 150, 27.7, 21.6 ppm; HRMS (ESI, MNa+) calcd, for
C32H30NaN8O2 m/z: 581.2384, found: 581.2396.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
V. Marin, E. Holder, R. Hoogenboom and U. S. Schubert,
Chem. Soc. Rev., 2007, 36, 618-635.
H. Snaith, J. Nat. Mater., 2018, 17, 372-376.
10 P. R. Andres and U. S. Schubert, Adv. Mater., 2004, 16, 1043-
1068.
11 C.A. Angell, Science, 1995, 267, 1924-1935.
12 M. D. Ediger, C. A. Angell and S. R. Nagel, J. Phys. Chem.,
1996, 100, 13200-13212.
13 Y. Shirota, J. Mater. Chem., 2000, 10, 1-25.
14 P. Strohriegl and J. V. Grazulevicius, Adv. Mater., 2002, 14,
1439-1452.
15 Y. Shirota, J. Mater. Chem., 2005, 15, 75-93.
16 Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953-
1010.
17 M. Iida, R. Masuda, G. Naren, Y. Bin and K. Kajiwara, Chem.
Lett., 2004, 33, 1462–1463.
18 Y. Hirai, T. Nakanishi, Y. Kitagawa, K. Fushimi, T. Seki, H. Ito,
H. Fueno, K. Tanaka, T. Satoh and Y. Hasegawa, Inorg. Chem.,
2015, 54, 4364-4370.
19 J. D. Wuest and O. Lebel, Tetrahedron, 2009, 65, 7393-7402.
20 R. N. Eren, A. Plante, A. Meunier, A. Laventure, Y. Huang, J.
G. Briard, K. J. Creber, C. Pellerin, A. Soldera and O. Lebel,
Tetrahedron, 2012, 68, 10130-10144.
21 A. Laventure, A. Soldera, C. Pellerin and O. Lebel, New J.
Chem., 2013, 37, 3881-3889.
22 O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat and O.
Lebel, New J. Chem., 2015, 39, 9162-9170.
23 T. Adhikari, J.-M. Nunzi and O. Lebel, Org. Electron., 2017,
48, 230-240.
24 S. Bellemin-Laponnaz and S. Dagorne, in Chemistry of Metal
Phenolates, Vol 1, ed. J. Zabicky, John Wiley & Sons Ltd.,
Chichester, UK, 2014, 263-309.
25 R. M. Clarke and T. Storr, Dalton Trans., 2014, 43, 9380-9391.
26 A. W. Kleij, Dalton Trans., 2009, 4635-4639.
27 A. W. Kleij, Eur. J. Inorg. Chem., 2009, 193-205.
28 K. C. Gupta and A. K. Sutar, Coord. Chem.
Rev., 2008, 252, 1420-1450.
29 D. J. Darensbourg, Chem. Rev., 2007, 107, 2388-2410.
30 P. G. Cozzi, Chem. Soc. Rev., 2004, 33, 410-421.
31 E. Toyota, H. Sekizaki, K. Itoh and K. Tanizawa, Chem. Pharm.
Bull., 2003, 51, 625-629.
32 R. J. Rahaim Jr. and R. E. Maleczka Jr., Synthesis, 2006, 19,
3316–3340.
33 J.-P. Wan, S.-F. Gan, J.-M. Wu and Y. Pan, Green Chem., 2009,
11, 1633–1637.
34 S. V. Patil, S. S. Patil and V. D. Bobade, Arabian J. Chem.
2016, 9, S515–S521.
35 T. Adhikari, Z. Ghoshouni Rahami, J.-M. Nunzi and O. Lebel,
Org. Electron., 2016, 34, 146-156.
36 J. Lopez, S. Liang and X. R. Bu, Tetrahedron Lett., 1998, 39,
4199-4202.
Synthesis of 10Zn. Compound 10Zn was synthesized according
to the same procedure as analogue 8Co from ligand 10 and
Zn(OAc)2 • 2H2O. Yield: 60 %; Tg 167 °C; FTIR (KBr) 3389,
2950.89, 2887, 1768, 1723, 1614, 1514, 1484, 1460, 1444,
1422, 1378, 1340, 1317, 1279, 1239, 1178, 1116, 1058, 1036,
1
991, 930, 921, 870, 801, 761 cm-1; H NMR (400 MHz, DMSO-
d6, 363 K) δ 8.96 (s, 1H), 8.85 (s, 1H), 8.41 (s, 1H), 8.30 (s, 1H),
7.86 (m, 1H), 7.79 (s, 1H), 7.73 (s, 1H), 7.49 – 7.47 (d, 1H), 7.39
(m, 5H), 7.25 (t, 2H), 6.73 (t, 2H), 6.56 (s, 1H), 6.52 (t, 1H), 6.45
(m, 1H), 2.89 (s, 3H), 2.21 (s, 7H) ppm; 13C NMR (75 MHz,
DMSO-d6) δ 172.2, 169.0, 166.0, 164.2, 162.7, 162.1, 140.2,
139.3, 137.0, 136.1, 134.2, 130.5, 127.1, 127.1, 126.0, 124.8,
123.0, 122.9, 122.6, 119.3, 117.9, 117.5, 116.4, 116.2, 112.9,
27.2, 21.1 ppm; HRMS (MALDI, M+) calcd. for C32H31N8O2Zn
m/z: 621.1699, found: 621.1702.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
The authors would like to thank the Canadian Defence
Academy Research Programme (CDARP) from RMC for
funding. The authors would also like to thank Dr. Philippe
Venne for mass spectrometry and Mr. Bob Whitehead for X-
ray diffraction analyses.
References
37 C. H. V. Kumar, K. N. Shivananda, R. V. Jagadeesh and C.
Raju, J. Mol. Cat. A: Chem., 2009, 311, 23–28.
38 L. J. Boucher and M. O. Farrell, J. Inorg. Nuc. Chem., 1973, 35,
3731-3738.
39 D. Brahman, R. Pradhan and B. Sinha, J. Chem. Thermodyn.,
2014, 75, 96-105.
1
J. R. Gispert, Coordination Chemistry, Wiley-VCH, Weinheim,
2008.
A. S. Ogunlaja, P. E. Kleyi, R. S. Walmsley and Z. R. Tshentu,
Catalysis, 2016, 28, 144-174.
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins