50
W. Huang et al. / Journal of Catalysis 246 (2007) 40–51
in the literature, there are three types of active sites for the
hydrogenation of the acetylene–ethylene mixture on alumina-
supported Pd [59,60]. A1 and A2 sites are highly selective in
the hydrogenation of acetylene to ethylene via a mechanism
involving the competitive (A1) and noncompetitive (A2) ad-
sorption of acetylene and hydrogen. The E sites are active only
for the hydrogenation of ethylene, with both acetylene and eth-
ylene competitively adsorbing on the E sites. Furthermore, on
γ -Al2O3-supported Pd, ethylene can be hydrogenated on the
γ -Al2O3 support by means of hydrogen spilled over from Pd
[59,61–63]. In this case, the E sites are as important as A sites
and play an important role in the selective hydrogenation of
acetylene in ethylene. Compared with the active Pd metal sites,
the support sites are more abundant with the catalyst loadings
used in the present study. As a result, the adsorption of ethyl-
ene could be stronger than that of acetylene by involving the
support, because the equilibrium constants in Table 3 include
contributions from both Pd metals and the γ -Al2O3 support.
[12] H. Nakatsuji, M. Hada, T. Yonezawa, Surf. Sci. 185 (1987) 319–342.
[13] J. Horiuchi, M. Polanyi, Trans. Faraday Soc. 30 (1934) 1164–1172.
[14] R.D. Cortright, S.A. Goddard, J.E. Rekoske, J.A. Dumesic, J. Catal. 127
(1991) 342–353.
[15] W.L. Kranich, A.H. Weiss, Z. Schay, L. Guczi, Appl. Catal. 13 (1985)
257–267.
[16] D.R. Corbin, L. Abrams, C. Bonifaz, J. Catal. 115 (1989) 420–429.
[17] D.A. Dougherty, Science 271 (1996) 163–168.
[18] R.I. Keir, D.W. Lamb, G.L.D. Ritchie, J.N. Watson, Chem. Phys. Lett. 279
(1997) 22–28.
[19] T. Kar, R. Ponec, A.B. Sannigrahi, J. Phys. Chem. A 105 (2001) 7737–
7744.
[20] N.A. Khan, H.H. Hwu, J.G. Chen, J. Catal. 205 (2002) 259–265.
[21] H.H. Hwu, J. Eng, J.G. Chen, J. Am. Chem. Soc. 124 (2002) 702–709.
[22] N.A. Khan, L.E. Murillo, Y.Y. Shu, J.G. Chen, Catal. Lett. 105 (2005)
233–238.
[23] J.R. Kitchin, J.K. Norskov, M.A. Barteau, J.G. Chen, Phys. Rev. Lett. 93
(2004) 156801.
[24] N.A. Khan, J.G. Chen, in: Nanotechnology in Catalysis, vol. 1, 2004,
pp. 17–32.
[25] M.B. Zellner, A.M. Goda, O. Skoplyak, M.A. Barteau, J.G. Chen, Surf.
Sci. 583 (2005) 281–296.
[26] B. Hammer, J.K. Norskov, in: Advances in Catalysis, vol. 45, 2000,
pp. 71–129.
5. Conclusion
[27] L.E. Murillo, N.A. Khan, J.G. Chen, Surf. Sci. 594 (2005) 27–42.
[28] S. Lambert, C. Cellier, P. Grange, J.P. Pirard, B. Heinrichs, J. Catal. 221
(2004) 335–346.
[29] C.L.M. Joyal, J.B. Butt, J. Chem. Soc. Faraday Trans. I 83 (1987) 2757–
2764.
[30] V. Ponec, G.C. Bond, Catalysis by Metals and Alloy, Elsevier, Amsterdam,
1995.
[31] Y. Somanoto, W.M. Sachtler, J. Catal. 32 (1974) 315–324.
[32] D. Cormack, J. Pritchard, R.L. Moss, J. Catal. 37 (1975) 548–552.
[33] B. Heinrichs, F. Noville, J.P. Schoebrechts, J.P. Pirard, J. Catal. 192 (2000)
108–118.
[34] W.M.H. Sachtler, Catal. Rev. Sci. Eng. 14 (1976) 193–210.
[35] A. Balerna, G. Deganello, L. Liotta, A. Longo, A. Martorana, C. Menegh-
ini, S. Mobilio, A.M. Venezia, J. Non-Cryst. Solids 293 (2001) 682–687.
[36] J.M. Wei, E. Iglesia, J. Catal. 224 (2004) 370–383.
[37] M.C.J. Bradford, M.A. Vannice, Appl. Catal. A 142 (1996) 97–122.
[38] H. Yang, J.L. Whitten, J. Chem. Phys. 98 (1993) 5039–5049.
[39] D.J. Moon, M.J. Chung, K.Y. Park, S.I. Hong, Appl. Catal. A 168 (1998)
159–170.
Novel selective hydrogenation catalysts have been synthe-
sized and evaluated using an FTIR batch reactor. The results
show that among the γ -Al2O3-supported catalysts, the PdAg
catalyst has the highest selectivity, whereas PdNi behaves sim-
ilar to the Pd monometallic catalyst. Preferential adsorption of
acetylene over ethylene on Na+-β-zeolites increases the sur-
face concentration of acetylene, resulting in a further increase
in the hydrogenation selectivity of acetylene. Finally, the PdAg/
Na+-β-zeolite catalyst shows significantly higher selectivity
than the other catalysts.
Acknowledgments
Financial support was provided by from the US Department
of Energy, Office of Science, Division of Chemical Sciences
(Grant FG02-03ER15468).
[40] P. Basu, T.H. Ballinger, J.T. Yates, Rev. Sci. Instrum. 59 (1988) 1321–
1327.
References
[41] R. Kramer, Chemometric Techniques for Quantitative Analysis, Dekker,
New York, 1998.
[42] A.B. Mhadeshwar, J.R. Kitchin, M.A. Barteau, D.G. Vlachos, Catal.
Lett. 96 (2004) 13–22.
[1] J.H. Kang, E.W. Shin, W.J. Kim, J.D. Park, S.H. Moon, Catal. Today 63
(2000) 183–188.
[43] J. Gislason, W.S. Xia, H. Sellers, J. Phys. Chem. A 106 (2002) 767–774.
[44] Q.W. Zhang, J. Li, X.X. Liu, Q.M. Zhu, Appl. Catal. A 197 (2000) 221–
228.
[45] C.E. Gigola, H.R. Aduriz, P. Bodnariuk, Appl. Catal. 27 (1986) 133–144.
[46] R.K. Nandi, P. Georgopoulos, J.B. Cohen, J.B. Butt, R.L. Burwell, D.H.
Bilderback, J. Catal. 77 (1982) 421–431.
[2] N.S. Schbib, M.A. Garcia, C.E. Gigola, A.F. Errazu, Ind. Eng. Chem.
Res. 35 (1996) 1496–1505.
[3] P. Praserthdam, S. Phatanasri, J. Meksikarin, Catal. Today 63 (2000) 209–
213.
[4] W.J. Kim, J.H. Kang, I.Y. Ahn, S.H. Moon, Appl. Catal. A 268 (2004)
77–82.
[47] S. Shaikhutdinov, M. Heemeier, M. Baumer, T. Lear, D. Lennon, R.J. Old-
man, S.D. Jackson, H.J. Freund, J. Catal. 200 (2001) 330–339.
[48] P.S. Cremer, G.A. Somorjai, J. Chem. Soc. Faraday Trans. 91 (1995)
3671–3677.
[49] P.S. Cremer, X.C. Su, Y.R. Shen, G.A. Somorjai, J. Am. Chem. Soc. 118
(1996) 2942–2949.
[50] T. Miura, H. Kobayashi, K. Domen, J. Phys. Chem. B 104 (2000) 6809–
6814.
[51] D.C. Huang, K.H. Chang, W.F. Pong, P.K. Tseng, K.J. Hung, W.F. Huang,
Catal. Lett. 53 (1998) 155–159.
[5] H. Molero, B.F. Bartlett, W.T. Tysoe, J. Catal. 181 (1999) 49–56.
[6] A. Sarkany, A. Beck, A. Horvath, Z. Revay, L. Guczi, Appl. Catal. A 253
(2003) 283–292.
[7] B.M. Choudary, M.L. Kantam, N.M. Reddy, K.K. Rao, Y. Haritha,
V. Bhaskar, F. Figueras, A. Tuel, Appl. Catal. A 181 (1999) 139–144.
[8] H.R. Aduriz, P. Bodnariuk, M. Dennehy, C.E. Gigola, Appl. Catal. 58
(1990) 227–239.
[9] S.G. Podkolzin, R. Alcala, J.A. Dumesic, J. Mol. Catal. A Chem. 218
(2004) 217–227.
[10] P.A. Sheth, M. Neurock, C.M. Smith, J. Phys. Chem. B 107 (2003) 2009–
2017.
[52] R.N. Lamb, B. Ngamsom, D.L. Trimm, B. Gong, P.L. Silveston,
P. Praserthdam, Appl. Catal. A 268 (2004) 43–50.
[11] J.W. Medlin, M.D. Allendorf, J. Phys. Chem. B 107 (2003) 217–223.