JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
3 (a) Y. Jin, F. Ye, C. Wu, Y.-H. Chan, D. T. Chiu, Chem. Com-
mun. 2012, 48, 3161–3163; (b) Y.-H. Chan, F. Ye, M. E. Gallina,
X. Zhang, Y. Jin, I.-C. Wu, D. T. Chiu, J. Am. Chem. Soc. 2012,
134, 7309–7312; (c) J. Geng, J. Liu, J. Liang, H. Shi, B. Liu,
Nanoscale 2013, 5, 8593–8601; (d) C. Wu, Y. Jin, T. Schneider,
D. R. Burnham, P. B. Smith, D. T. Chiu, Angew. Chem. Int. Ed.
2010, 49, 9436–9440.
4 (a) D. Li, R. B. Kaner, Science 2008, 320, 1170–1171; (b) D. A.
Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B.
Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Nature
2007, 448, 457–460; (c) K. S. Novoselov, A. K. Geim, S. V.
Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,
A. A. Firsov, Science 2004, 306, 666–669; (d) M. J. Allen, V. C.
Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132–145.
ꢀ
5 (a) E. Morales-Navaez, A. Merkoc¸i, Adv. Mater. 2012, 24,
3298–3308; (b) S. Guo, S. Dong, J. Mater. Chem. 2011, 21,
18503–18516; (c) Y. Xu, A. Malkovskiy, Y. Pang, Chem. Com-
mun. 2011, 47, 6662–6664; (d) Y. Lin, Y. Tao, F. Pu, J. Ren, Z.
Qu, Adv. Funct. Mater. 2011, 21, 4565–4572; (e) J. Geng, L.
Zhou, B. Liu, Chem. Commun. 2013, 49, 4818–4820; (f) X. Qi, H.
Li, J. W. Y. Lam, X. Yuan, J. Wei, B. Z. Tang, H. Zhang, Adv.
Mater. 2012, 24, 4191–4195.
FIGURE 5 Selectivity for trypsin compared to other proteins
and enzymes in 20 mM HEPES buffer at pH 5 7.4. [GO] 5 100.1
mg/mL; [proteins] 5 60.0 mg/mL. Excitation wavelength kex 5 380
nm Io and I correspond to emission intensity at 491 nm in the
absence and presence of GO, respectively.
6 (a) K. Yamashita, K. Mimori, H. Inoue, Cancer Res. 2003, 63,
6575–6578; (b) M. Hirota, M. Ohmuraya, H. J. Baba, Gastroen-
terology 2006, 41, 832–836.
pArg@CPN was effectively suppressed by GO. The presence
of trypsin selectively degraded pArg and, in turn, destroyed
the fluorescence-quenched nanohybrid assay, resulting in the
release of CPN. Therefore, fluorescence could be recovered
according to the concentration of trypsin. Because pArg was
employed as the linker of CPN and GO as well as selective
degrading sites by trypsin, unique selectivity was observed
over other proteins, which indicates this system can be an
efficient tool for potein sensing.
7 (a) H. Yamamoto, S. Iku, Y. Adachi, A. Imsumran, H.
Taniguchi, K. Nosho, Y. Min, S. Horiuchi, M. Yoshida, F. Itoh,
K. Imai, J. Pathol. 2003, 199, 176–184; (b) G. H. Caughey,
Immunol. Rev. 2007, 217, 141–154.
8 (a) J. V. Olsen, S. E. Ong, M. Mann, Mol. Cell. Proteomics
2004, 3, 608–614; (b) Q. Zhu, R. Zhan, B. Liu, Macromol. Rapid
Commun. 2010, 31, 1060–1064; (c) J. H. Wosnick, C. M. Mello,
T. M. Swager, J. Am. Chem. Soc. 2005, 127, 3400–3405.
9 (a) M. Li, X. Zhou, S. Guo, N. Q. Wu, Biosens. Bioelectron.
2013, 43, 69–74; (b) M. Li, Q. Wang, X. Shi, L. A. Hornak, N. Q.
Wu, Anal. Chem. 2011, 83, 7061–7065.
ACKNOWLEDGMENTS
10 (a) J. Balapanuru, J.-X. Yang, S. Xiao, Q. Bao, M. Jahan, L.
Polavarapu, J. Wei, Q.-H. Xu, K. P. Loh, Angew. Chem. Int. Ed.
2010, 49, 6549–6553; (b) X. Xu, J. Huang, J. Li, J. Yan, J. Qin,
Z. Li, Chem. Commun. 2011, 47, 12385–12387; (c) H.-L. Zhang,
X.-L. Wei, Y. Zang, J.-Y. Cao, S. Liu, X.-P. He, Q. Chen, Y.-T.
Long, J. Li, G.-R. Chen, K. Chen, Adv. Mater. 2013, 25, 4097–
4101; (d) E. Ahmed, S. W. Morton, P. T. Hammond, T. M.
Swager, Adv. Mater. 2013, 25, 4504–4510; (e) X. Wang, F. He, L.
Li, H. Wang, R. Yan, L. Li, ACS Appl. Mater. Interfaces 2013, 5,
5700–5708.
Financial support from National Research Foundation of Korea
(NRF) funded by Korean government via Basic Science
Research Program (2012R1A2A2A01004979) is gratefully
acknowledged.
REFERENCES AND NOTES
1 (a) J. Zhang, Y. Tang, K. Lee, M. Ouyang, Science 2010, 327,
1634–1638; (b) S.-H. Hu, X. Gao, J. Am. Chem. Soc. 2010, 132,
7234–7237; (c) M. R. Jones, K. D. Osberg, R. J. Macfarlane, M.
R. Langille, C. A. Mirkin, Chem. Rev. 2011, 111, 3736–3827; (d)
C. D. M. Donegaꢀ, Chem. Soc. Rev. 2011, 40, 1512–1546; (e) Y.
Jin, X. Gao, Nat. Nanotechnol. 2009, 4, 571–576; (f) M. R. Buck,
J. F. Bondi, R. E. Schaak, Nat. Chem. 2012, 4, 37–44.
11 Z.-G. Zhang, K.-L. Zhang, G. Liu, C.-X. Zhu, K.-G. Neoh, E.-T.
Kang, Macromolecules 2009, 42, 3104–3111.
12 W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80,
1339–1339.
13 C. Wu, S. J. Hansen, Q. Hou, J. Yu, M. Zeigler, Y. Jin, D. R.
Burnham, J. D. McNeill, J. M. Olson, D. T. Chiu, Angew. Chem.
Int. Ed. 2011, 50, 3430–3434.
2 (a) K. Pu, K. Li, J. Shi, B. Liu, Chem. Mater. 2009, 21, 3816–
3822; (b) L. P. Fernando, P. K. Kandel, J. Yu, J. McNeill, P. C.
Ackroyd, K. A. Christensen, Biomacromolecules 2010, 11, 2675–
14 H. Shi, H. Sun, H. Yang, S. Liu, G. Jenkins, W. Feng, F. Li, Q.
Zhao, B. Liu, W. Huang, Adv. Funct. Mater. 2013, 23, 3268–
3276.
ꢀ
2682; (c) T. Vokata, J. H. Moon, Macromolecules 2013, 46,
1253–1259; (d) C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G.
Schiro, D. R. Burnham, J. D. McNeill, D. T. Chiu, J. Am. Chem.
Soc. 2010, 132, 15410–15417; (e) C. Wu, B. Bull, C. Szymanski,
K. Christensen, J. McNeill, ACS Nano 2008, 2, 2415–2423; (f) A.
Kaeser, A. P. H. Schenning, Adv. Mater. 2010, 22, 2985–2997;
(g) J. Pecher, S. Mecking, Chem. Rev. 2010, 110, 6260–6279; (h)
P. Howes, M. Green, J. Levitt, K. Suhling, M. Hughes, J. Am.
Chem. Soc. 2010, 132, 3989–3996.
15 R. J. Hunters, Zeta Potential in Colloid Science: Principles
and Applications, Academic Press: London, 1981.
16 (a) Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem.
Soc. 2008, 130, 5856–5857; (b) Y. Y. Liang, D. Q. Wu, X. L.
€
Feng, K. Mullen, Adv. Mater. 2009, 21, 1679–1683.
17 V. Thomsen, D. Schatzlein, D. Mercuro, Spectroscopy 2003,
18, 112–114.
1904
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 1898–1904