208
Can. J. Chem. Vol. 81, 2003
4. J. Rocek. The chemistry of carbonyl group. Edited by S. Patai.
Vol. 1. Interscience, London. 1966. Chap 10.
tionation reaction. It has been shown that for the reaction
Cr(IV) + Cr(VI) → 2Cr(V), the standard potential for the
Cr(VI)–Cr(V) couple is extremely favourable (E° = 0.62 V)
(25), and this reaction proceeds rapidly. The Cr(V)–Cr(III)
couple has a potential of 1.75 V, which enables the rapid
conversion of Cr(V) to Cr(III) after the reaction of Cr(V)
with the substrate (25, 26).
If the mechanism shown in Scheme 1 is correct, then the
attack of the protonated QDC (PQ) on the aldehyde hydrate
(Hy) is crucial and would be favored by the formation of the
cyclic chromate ester (E). The rate law has been derived as
follows:
5. (a) B. Kuotsu, E. Tiewsoh, A. Debroy, and M.K. Mahanti. J.
Org. Chem. 61, 8875 (1996) and refs. therein; (b) R.
Kharmutee, A. Debroy, and M.K. Mahanti. Oxid. Commun.
21, 553 (1998); (c) E. Karim and M.K. Mahanti. Oxid.
Commun. 21, 559 (1998); (d) N. Thangkhiew, A. Debroy, and
M.K. Mahanti. Oxid. Commun. 22, 136 (1999).
6. (a) M.K. Mahanti. Oxid. Commun. 22, 142 (1999); (b) G.S.
Chaubey and M.K. Mahanti. Oxid. Commun. 23, 500 (2000);
(c) G.G. Kharnaior, G.S. Chaubey, and M.K. Mahanti. Oxid.
Commun. 24, 377 (2001).
7. K. Balasubramanian and V. Prathiba. Indian J. Chem. 25B,
326 (1986).
8. K.B. Wiberg. J. Am. Chem. Soc. 76, 5371 (1954).
9. R.C. Weast (Editor). CRC handbook of chemistry and physics.
CRC Press, Ohio. 1978.
10. E.S. Amis. Solvent effects on reaction rates and mechanisms.
Academic Press, New York. 1967. p. 42.
11. J.S. Littler and W.A. Waters. J. Chem. Soc. 1299 (1959).
12. R.P. Bell. Adv. Phys. Org. Chem. 4, 1 (1964).
13. J. Rocek. Tetrahedron Lett. 5, 1 (1959).
14. K.K. Banerji. Tetrahedron, 43, 5949 (1987).
15. V.K. Sharma, K. Sharma, and N. Mishra. Oxid. Commun. 16,
33 (1993).
16. K.K. Bupathi, P. Saroja, and S. Kandlikar. Oxid. Commun. 23,
532 (2000).
[5]
–d[QDC]/dt = k3[E] = k3[Hy][PQ],
where [PQ] = K1[QDC][H+] and [Hy] = K2[A][H2O].
Hence, –d[QDC]/dt = K1K2 k3[A][QDC][H+], which
shows a first-order dependence on each of the concentrations
(substrate, oxidant, and acid). Hence, –2.303d(log[QDC])/dt =
k = K1K2 k3[A][QDC][H+]. This rate law explains all the ex-
perimentally observed results.
The data collected demonstrates that the QDC oxidation
of α,β-unsaturated aldehydes results in the formation of
carboxylic acids, substantiating the mechanism wherein
there is an attack of the oxidant on the aldehyde hydrate.
There is no cleavage of the carbon—carbon bond, thus rul-
ing out the possibility of any enolization. This study empha-
sizes the efficiency of QDC reacting with α,β-unsaturated
aldehydes, suggesting a regioselective route for the synthesis
of carboxylic acids.
17. K.B. Wiberg and F. Freeman. J. Org. Chem. 65, 573 (2000).
18. C. Hansch, A. Leo, and R.W. Taft. Chem. Rev. 91, 165 (1991).
19. G.T.E. Graham and F.H. Westheimer. J. Am. Chem. Soc. 80,
3022 (1958).
20. J. Rocek, F.H. Westheimer, A. Eschenmoser, L. Moldovanyi,
and J. Schreiber. Helv. Chim. Acta, 45, 2554 (1962).
21. J. Rocek and C.S. Ng. J. Am. Chem. Soc. 96, 1522 (1974).
22. (a) U. Klanning. Acta Chem. Scand. 11, 313 (1957); (b) 12,
576 (1958).
Acknowledgment
Financial support from the University Grants Commis-
sion, New Delhi, under the Special Assistance Program, is
gratefully acknowledged.
23. C.G. Swain, R.F.W. Bader, R.M. Estene, and R.N. Griffin. J.
Am. Chem. Soc. 83, 1951 (1961).
24. J.S. Littler. Tetrahedron, 27, 81 (1971).
References
25. F.H. Westheimer. Chem. Rev. 45, 419 (1949).
26. J.F. Perez-Benito, C. Arias, and D. Lamrhari. Chem. Commun.
472 (1992).
1. H. Land and W.A. Waters. J. Chem. Soc. 4312 (1957).
2. W.A. Waters. Prog. Org. Chem. 5, 1 (1963).
3. R.H. Hall and E.S. Stern. J. Chem. Soc. 490 (1950).
© 2003 NRC Canada