Journal of Medicinal Chemistry
Article
Vollenweider, P.; Wallentin, L.; Wareham, N. J.; Whitfield, J. B.;
Wolffenbuttel, B. H.; Altshuler, D.; Ordovas, J. M.; Boerwinkle, E.;
Palmer, C. N.; Thorsteinsdottir, U.; Chasman, D. I.; Rotter, J. I.;
Franks, P. W.; Ripatti, S.; Cupples, L. A.; Sandhu, M. S.; Rich, S. S.;
Boehnke, M.; Deloukas, P.; Mohlke, K. L.; Ingelsson, E.; Abecasis, G.
R.; Daly, M. J.; Neale, B. M.; Kathiresan, S. Common variants
associated with plasma triglycerides and risk for coronary artery
disease. Nat. Genet. 2013, 45 (11), 1345−1352. (b) Goldberg, I. J.;
Eckel, R. H.; McPherson, R. Triglycerides and heart disease: still a
hypothesis? Arterioscler., Thromb., Vasc. Biol. 2011, 31 (8), 1716−1725.
(10) (a) Denison, H.; Nilsson, C.; Lofgren, L.; Himmelmann, A.;
Martensson, G.; Knutsson, M.; Al-Shurbaji, A.; Tornqvist, H.;
Eriksson, J. W. Diacylglycerol acyltransferase 1 inhibition with
AZD7687 alters lipid handling and hormone secretion in the gut
with intolerable side effects: a randomized clinical trial. Diabetes, Obes.
Metab. 2014, 16 (4), 334−343. (b) Maciejewski, B. S.; LaPerle, J. L.;
Chen, D.; Ghosh, A.; Zavadoski, W. J.; McDonald, T. S.; Manion, T.
B.; Mather, D.; Patterson, T. A.; Hanna, M.; Watkins, S.; Gibbs, E. M.;
Calle, R. A.; Steppan, C. M. Pharmacological inhibition to examine the
role of DGAT1 in dietary lipid absorption in rodents and humans. Am.
J. Physiol Gastrointest Liver Physiol 2013, 304 (11), G958−G969.
(
c) ACCORD Study Group; Ginsberg, H. N.; Elam, M. B.; Lovato, L.
(11) A 12-week multi-center, randomized, double-blind, placebo-
C.; Crouse, J. R., III; Leiter, L. A.; Linz, P.; Friedewald, W. T.; Buse, J.
B.; Gerstein, H. C.; Probstfield, J.; Grimm, R. H.; Ismail-Beigi, F.;
Bigger, J. T.; Goff, D. C., Jr.; Cushman, W. C.; Simons-Morton, D. G.;
Byington, R. P. Effects of combination lipid therapy in type 2 diabetes
mellitus. N. Engl. J. Med. 2010, 362 (17), 1563−1574. (d) Jorgensen,
A. B.; Frikke-Schmidt, R.; Nordestgaard, B. G.; Tybjaerg-Hansen, A.
Loss-of-function mutations in APOC3 and risk of ischemic vascular
disease. N. Engl. J. Med. 2014, 371 (1), 32−41. (e) The TG and HDL
Working Group of the Exome Sequencing Project, National Heart,
Lung, and Blood Institute; Crosby, J.; Peloso, G. M.; Auer, P. L.;
Crosslin, D. R.; Stitziel, N. O.; Lange, L. A.; Lu, Y.; Tang, Z. Z.; Zhang,
H.; Hindy, G.; Masca, N.; Stirrups, K.; Kanoni, S.; Do, R.; Jun, G.; Hu,
Y.; Kang, H. M.; Xue, C.; Goel, A.; Farrall, M.; Duga, S.; Merlini, P. A.;
Asselta, R.; Girelli, D.; Olivieri, O.; Martinelli, N.; Yin, W.; Reilly, D.;
Speliotes, E.; Fox, C. S.; Hveem, K.; Holmen, O. L.; Nikpay, M.;
Farlow, D. N.; Assimes, T. L.; Franceschini, N.; Robinson, J.; North, K.
E.; Martin, L. W.; DePristo, M.; Gupta, N.; Escher, S. A.; Jansson, J.
H.; Van Zuydam, N.; Palmer, C. N.; Wareham, N.; Koch, W.;
Meitinger, T.; Peters, A.; Lieb, W.; Erbel, R.; Konig, I. R.; Kruppa, J.;
Degenhardt, F.; Gottesman, O.; Bottinger, E. P.; O’Donnell, C. J.;
Psaty, B. M.; Ballantyne, C. M.; Abecasis, G.; Ordovas, J. M.;
Melander, O.; Watkins, H.; Orho-Melander, M.; Ardissino, D.; Loos,
R. J.; McPherson, R.; Willer, C. J.; Erdmann, J.; Hall, A. S.; Samani, N.
J.; Deloukas, P.; Schunkert, H.; Wilson, J. G.; Kooperberg, C.; Rich, S.
S.; Tracy, R. P.; Lin, D. Y.; Altshuler, D.; Gabriel, S.; Nickerson, D. A.;
Jarvik, G. P.; Cupples, L. A.; Reiner, A. P.; Boerwinkle, E.; Kathiresan,
S. Loss-of-function mutations in APOC3, triglycerides, and coronary
disease. N. Engl. J. Med. 2014, 371 (1), 22−31.
controlled, parallel-group adaptive design study to evaluate the efficacy
on blood glucose control and safety of five doses of LCQ908 (2, 5, 10,
1
5 and 20 mg) or sitagliptin 100 mg on a background therapy of
(12) Stone, S. J.; Myers, H. M.; Watkins, S. M.; Brown, B. E.;
Feingold, K. R.; Elias, P. M.; Farese, R. V., Jr. Lipopenia and skin
barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 2004,
2
(
79 (12), 11767−11776.
13) (a) Choi, C. S.; Savage, D. B.; Kulkarni, A.; Yu, X. X.; Liu, Z. X.;
Morino, K.; Kim, S.; Distefano, A.; Samuel, V. T.; Neschen, S.; Zhang,
D.; Wang, A.; Zhang, X. M.; Kahn, M.; Cline, G. W.; Pandey, S. K.;
Geisler, J. G.; Bhanot, S.; Monia, B. P.; Shulman, G. I. Suppression of
diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with
antisense oligonucleotides reverses diet-induced hepatic steatosis and
insulin resistance. J. Biol. Chem. 2007, 282 (31), 22678−22688.
(b) Liu, Y.; Millar, J. S.; Cromley, D. A.; Graham, M.; Crooke, R.;
Billheimer, J. T.; Rader, D. J. Knockdown of acyl-CoA:diacylglycerol
acyltransferase 2 with antisense oligonucleotide reduces VLDL TG
and ApoB secretion in mice. Biochim. Biophys. Acta, Mol. Cell Biol.
Lipids 2008, 1781 (3), 97−104. (c) Yu, X. X.; Murray, S. F.; Pandey, S.
K.; Booten, S. L.; Bao, D.; Song, X. Z.; Kelly, S.; Chen, S.; McKay, R.;
Monia, B. P.; Bhanot, S. Antisense oligonucleotide reduction of
DGAT2 expression improves hepatic steatosis and hyperlipidemia in
obese mice. Hepatology 2005, 42 (2), 362−371.
(14) (a) Kim, M. O.; Lee, S.; Choi, K.; Lee, S.; Kim, H.; Kang, H.;
Choi, M.; Kwon, E. B.; Kang, M. J.; Kim, S.; Lee, H.-J.; Lee, H. S.;
Kwak, Y.-S.; Cho, S. Discovery of a Novel Class of Diacylglycerol
Acyltransferase 2 Inhibitors with a 1H-Pyrrolo[2,3-b]Pyridine Core.
Biol. Pharm. Bull. 2014, 37 (10), 1655−1660. (b) Lee, K.; Kim, M.;
Lee, B.; Goo, J.; Kim, J.; Naik, R.; Seo, J. H.; Kim, M. O.; Byun, Y.;
Song, G. Y.; Lee, H. S.; Choi, Y. Discovery of indolyl acrylamide
derivatives as human diacylglycerol acyltransferase-2 selective inhib-
itors. Org. Biomol. Chem. 2013, 11 (5), 849−858. (c) Kim, M. O.; Lee,
S. U.; Lee, H. J.; Choi, K.; Kim, H.; Lee, S.; Oh, S. J.; Kim, S.; Kang, J.
S.; Lee, H. S.; Kwak, Y. S.; Cho, S. Identification and validation of a
selective small molecule inhibitor targeting the diacylglycerol
acyltransferase 2 activity. Biol. Pharm. Bull. 2013, 36 (7), 1167−
(
5) (a) Bell, D. A.; Hooper, A. J.; Burnett, J. R. Mipomersen, an
antisense apolipoprotein B synthesis inhibitor. Expert Opin. Invest.
Drugs 2011, 20 (2), 265−272. (b) Cuchel, M.; Rader, D. J.
Microsomal transfer protein inhibition in humans. Curr. Opin. Lipidol.
2
(
013, 24 (3), 246−250.
6) Yen, C. L.; Stone, S. J.; Koliwad, S.; Harris, C.; Farese, R. V., Jr.
Thematic review series: glycerolipids. DGAT enzymes and triacylgly-
cerol biosynthesis. J. Lipid Res. 2008, 49 (11), 2283−2301.
(
7) (a) Zammit, V. A. Hepatic triacylglycerol synthesis and secretion:
DGAT2 as the link between glycaemia and triglyceridaemia. Biochem. J.
2
013, 451 (1), 1−12. (b) Turchetto-Zolet, A. C.; Maraschin, F. S.; de
Morais, G. L.; Cagliari, A.; Andrade, C. M.; Margis-Pinheiro, M.;
Margis, R. Evolutionary view of acyl-CoA diacylglycerol acyltransferase
1
173. (d) Wurie, H. R.; Buckett, L.; Zammit, V. A. Diacylglycerol
acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and
utilizes nascent diglycerides and de novo synthesized fatty acids in
HepG2 cells. FEBS J. 2012, 279 (17), 3033−3047. (e) Qi, J.; Lang, W.;
Geisler, J. G.; Wang, P.; Petrounia, I.; Mai, S.; Smith, C.; Askari, H.;
Struble, G. T.; Williams, R.; Bhanot, S.; Monia, B. P.; Bayoumy, S.;
Grant, E.; Caldwell, G. W.; Todd, M. J.; Liang, Y.; Gaul, M. D.;
Demarest, K. T.; Connelly, M. A. The use of stable isotope-labeled
glycerol and oleic acid to differentiate the hepatic functions of DGAT1
and −2. J. Lipid Res. 2012, 53 (6), 1106−1116.
(15) During the preparation of this manuscript, a patent application
was published by Eli Lilly on pyrimidine-based DGAT2 inhibitors
showing in vivo pharmacology in rodent models . Camp, N. P.; Naik,
M. Novel DGAT2 inhibitors. PCT Int. Appl. WO2015077299, 2015.
(16) Yang, D.; Fokas, D.; Li, J.; Yu, L.; Baldino, C. M. A Versatile
Method for the Synthesis of Benzimidazoles from o-Nitroanilines and
Aldehydes in One Step via a Reductive Cyclization. Synthesis 2005, 1,
47−56.
(
2
DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol. Biol.
011, 11, 263.
8) (a) Cases, S.; Stone, S. J.; Zhou, P.; Yen, E.; Tow, B.; Lardizabal,
(
K. D.; Voelker, T.; Farese, R. V., Jr. Cloning of DGAT2, a second
mammalian diacylglycerol acyltransferase, and related family members.
J. Biol. Chem. 2001, 276 (42), 38870−38876. (b) Yen, C. L. E.;
Monetti, M.; Burri, B. J.; Farese, R. V., Jr. The triacylglycerol synthesis
enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes,
and retinyl esters. J. Lipid Res. 2005, 46 (7), 1502−1511.
(
9) (a) Devita, R. J.; Pinto, S. Current Status of the Research and
Development of Diacylglycerol O-Acyltransferase 1 (DGAT1)
Inhibitors. J. Med. Chem. 2013, 56 (24), 9820−9825. (b) Naik, R.;
Obiang-Obounou, B. W.; Kim, M.; Choi, Y.; Lee, H. S.; Lee, K.
Therapeutic Strategies for Metabolic Diseases: Small-Molecule
Diacylglycerol Acyltransferase (DGAT) Inhibitors. ChemMedChem
2
014, 9 (11), 2410−2424.
L
J. Med. Chem. XXXX, XXX, XXX−XXX