SHORT PAPER
Synthesis of 3-Nitropropanol Homologues
1925
13C NMR: d = 162.9, 149.1, 127.9, 62.6, 14.1.
(3) (a) The Chemistry of Amino, Nitro and Related Groups;
Patai, S., Ed.; John Wiley & Sons: Chichester, 1996.
(b) Rosini, G.; Ballini, R. Synthesis 1988, 833.
(c) Coombes, R. G. In Comprehensive Organic Chemistry,
Vol. 2; Barton, D. H. R.; Ollis, W. D.; Sutherland, I. O., Eds.;
Pergamon Press: Oxford, 1979, 303–382.
Ethyl 3-Methyl-3-nitroacrylate (6c)
1H NMR: d = 7.0 (s, 1 H), 4.2 (q, J = 7.2 Hz, 2 H), 2.5 (s, 3 H), 1.2
(t, J = 7.2 Hz, 3 H).
13C NMR: d = 164.2, 160.0, 121.5, 61.8, 14.1, 14.0.
(4) (a) Vogel, E. M.; Groger, H.; Shibasaki, M. Angew. Chem.
Int. Ed. 1999, 38, 1510. (b) Perekalin, V.; Lipina, E. S.;
Berestovitskaya, V. M.; Efremov, D. A. Nitroalkenes;
Wiley: Chichester, 1994. (c) Ono, N. The Nitro Group in
Organic Synthesis; Wiley-VCH: New York, 2001.
(5) (a) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.; Itoh,
N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7388. (b) Sasai,
H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem.
Soc. 1992, 114, 4418. (c) Sasai, H.; Itoh, N.; Suzuki, T.;
Shibasaki, M. Tetrahedron Lett. 1993, 34, 855.
(d) Funabashi, K.; Saida, Y.; Kanai, M.; Arai, T.; Susar, H.;
Shibasaki, M. Tetrahedron Lett. 1998, 39, 7557.
(6) (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921. (b) Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37,
159. (c) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317.
(d) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
(7) (a) For a related AgNO2 nitration see: Kornblum, N.; Taub,
B.; Ungnade, H. E. J. Am. Chem. Soc. 1954, 76, 3209.
(b) Noland, W.; Hartman, P. J. Am. Chem. Soc. 1954, 76,
3227.
(8) Luzzio, F. A. Tetrahedron 2001, 57, 915; and the references
therein.
(9) Amer, I.; Bravdo, T.; Blum, J.; Vollhardt, K. P. C.
Tetrahedron Lett. 1987, 28, 1321.
(10) Ranu, B. C.; Chakraborty, R. Tetrahedron 1992, 48, 5317;
and references therein.
(11) (a) Oehrlein, R.; Schwab, W.; Ehrler, R.; Jaeger, V.
Synthesis 1986, 535. (b) Griesser, H.; Ohrlein, R.; Schwab,
W.; Ehrler, R.; Jager, V. Org. Synth. 2000, 77, 236.
(12) Sellès, P.; Lett, R. Tetrahedron Lett. 2002, 43, 4621.
(13) Hatakeyama, S.; Yoshida, M.; Esumi, T.; Iwabuchi, Y.; Irle,
H.; Kawamoto, T.; Yamada, H.; Nishizawa, M. Tetrahedron
Lett. 1997, 38, 7887.
Hydrogenation of 6a–c; General Procedure
A suspension of nitroalkene (6.89 mmol) and 10% Pd/C (300 mg)
in CH2Cl2 (10 mL) was hydrogenated at r.t. under a balloon of H2
for 2 h. The mixture was filtered, concentrated in vacuo and the res-
idue chromatographed on silica gel with 5% EtOAc–hexanes to
give the corresponding nitroalkane.
Ethyl 3-Nitropropionate (7b)
1H NMR: d = 4.68 (t, J = 6.1 Hz, 2 H), 4.20 (q, J = 7.1 Hz, 2 H), 2.99
(t, J = 6.1 Hz, 2 H), 1.29 (t, J = 7.1 Hz, 3 H).
13C NMR: d = 169.8, 69.9, 61.5, 31.1, 14.1.
HRMS: m/z [M + H] calcd for C5H10NO4: 148.0609; found:
148.0790.
Ethyl 3-Nitrobutanoate (7c)
Alternatively, a mixture of ethyl-3-methyl-3-nitroacrylate (100 mg,
0.628 mmol), (S,S)-Me-DUPHOS-Rh (0.42 mg, 0.000628 mmol,
0.1 mol%), NH4CO2 (119 mg, 1.88 mmol) in CH2Cl2 (15 mL) in a
flask previously evacuated with hydrogen was allowed to stir over-
night. The mixture was filtered through celite and the combined fil-
trate evaporated in vacuo and directly chromatographed on silica
with 5% EtOAc–hexanes as eluent.
1H NMR: d = 4.93 (m, 1 H), 4.16 (q, J = 7.1 Hz, 2 H), 3.17 (dd, J =
8.7, 12.2 Hz, 1 H), 2.72 (dd, J = 5.1, 12.2 Hz, 1 H), 1.62 (d, J = 7.1
Hz, 3 H), 1.26 (t, J = 7.1 Hz, 3 H).
13C NMR: d = 169.4, 78.7, 61.5, 38.7, 19.6, 14.3.
HRMS: m/z [M + H] calcd for C6H12NO4: 162.0766; found:
162.0731.
(14) (a) Bianco, A.; Melchioni, C. Stud. Nat. Prod. Chem. 2002,
27, 103. (b) Unverzagt, C. Angew. Chem., Int. Ed. Engl.
1993, 32, 1691.
(15) (a) Baer, H. H.; Chiu, S.-H. L.; Shields, D. C. Can. J. Chem.
1973, 51, 2828. (b) Baitinger, W. F.; Schleyer, P. V. R.;
Murty, T. S. S. R.; Robinson, L. Tetrahedron 1964, 20,
1635.
(16) Chou, W.-C.; Fotsch, C.; Wong, C.-H. J. Org. Chem. 1995,
60, 2916.
(17) (a) Öhrlein, R.; Schwab, W.; Ehrler, R.; Jäger, V. Synthesis
1988, 236. (b) Jung, M. E.; Lowe, J. A. III; Lyster, M. A.;
Node, M.; Pfluger, R. W.; Brown, R. W. Tetrahedron 1984,
40, 4751.
(18) For examples of an enzymatic reduction of nitroalkenes to
nitroalkanes see: (a) Kamai, Y.; Inaba, Y.; Hayashi, M.;
Tokitoh, N. Tetrahedron Lett. 2001, 42, 3367. (b) Kawai,
Y.; Inaba, Y.; Tokitoh, N. Tetrahedron: Asymmetry 2001,
12, 309. (c) Ohta, H.; Ozaki, K.; Tsuchihashi, G. Chem. Lett.
1987, 191. (d) Ohta, H.; Kobayashi, N.; Ozaki, K. J. Org.
Chem. 1989, 54, 1802.
Acknowledgment
Financial support was provided by the New Zealand Cancer Socie-
ty, the Public Good Science Fund and the Foundation for Research
Science and Technology, and Victoria University of Wellington.
References
(1) (a) Barrett, A. G. M.; Grabowski, G. G. Chem. Rev. 1986,
86, 751. (b) Ono, N. The Nitro Group in Organic Synthesis;
Wiley-VCH: Weinheim, New York, 2001. (c) Berner, O.
M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
(2) (a) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Helv.
Chim. Acta 1985, 68, 1592. (b) Brown, B. R. The Organic
Chemistry of Aliphatic Nitrogen Compounds; Oxford
University: Oxford, 1994, 443–469. (c) Seebach, D.;
Colvin, E. W.; Lehr, F.; Weller, T. Chimia 1979, 33, 1.
(19) Czekelius, C.; Carreira, E. M. Org. Lett. 2004, 6, 4575.
(20) Jayakanthan, K.; Madhusudanan, K. P.; Vankar Yashwant,
D. Tetrahedron 2004, 60, 397.
Synthesis 2005, No. 12, 1923–1925 © Thieme Stuttgart · New York