C.C. Bridges et al. / Archives of Biochemistry and Biophysics 517 (2012) 20–29
[7] A.F. Castoldi, T. Coccini, L. Manzo, Rev. Environ. Health 18 (2003) 19–31.
29
levels in other organs [60]. On the other hand, the specific activity of
GTK is highest in kidney, but the enzyme is also notably active in liver
and, to a lesser extent, in brainand other organs [23,24]. Thus, the dif-
ferences inorgantoxicity ofCys-S-Hg-S-Cys versusCH3Hg-S-Cysmay
be related, in part, to differences in the way the compounds interact
with enzymes/transporters. For example, CH3Hg-S-Cys, but not Cys-
S-Hg-S-Cys, has been shown to cross the blood–brain barrier via the
amino acid transporter, system L [61,62]. Given that the human brain
contains large amounts of cystathionine [63], the neurotoxicity of
CH3Hg-S-Cys may be related, in part, to its transport through the
blood–brain barrier and its subsequent targeting of cystathionine
metabolism/turnover/function in the human brain. These mercury-
containing organosulfur conjugates are the forms to which humans
would be most often likely exposed following consumption of con-
taminated fish that are high in the food chain. Thus, the metabolic
burden of processing inorganic or organic forms of mercury, such
as monomethyl S-conjugates, would be expected to occur within tis-
sues of autotrophic species and/or animals lower in the food web that
are initially exposed to mercury from the atmosphere or that settled
in water.
Clearly human exposure to mercury-containing compounds has
numerous consequences, not only at the organ level, but also at the
cellular/molecular level. Our results emphasize the fact that mercury
not only binds covalently and indiscriminately to thiol moieties in
proteins, but once conjugated with sulfur-containing amino acids
and peptides, particularly cysteine and GSH, forms compounds that
can interact with enzymes, thereby potentially broadening the pro-
file associated with overall mercury toxicity. These compounds
may represent the major portion of organomercury that contributes
to the metabolic burden following consumption of mercury-contam-
inated foods.
[8] L. Trasande, P.J. Landrigan, C. Schecter, Environ. Health Perspect. 113 (2005)
590–596.
[9] B. Fuhr, D.L. Rabenstein, J. Am. Chem. Soc. 95 (1973) 6944–6950.
[10] T.W. Clarkson, Ann. Rev. Pharmacol. Toxicol. 32 (1993) 545–571.
[11] C.C. Bridges, R.K. Zalups, Toxicol. Appl. Pharmacol. 204 (2005) 274–308.
[12] T.A. Simmons-Willis, A.S. Koh, T.W. Clarkson, N. Ballatori, Biochem. J. 367
(2002) 239–246.
[13] R.K. Zalups, Pharmacol. Rev. 52 (2000) 113–143.
[14] D.H. Roos, R.O. Puntel, M. Farina, M. Aschner, R.K. Bohrer, J.B.T. Rocha, N.B.V.
Barbosa, Toxicol. Appl. Pharmacol. 252 (2011) 28–35.
[15] T.W. Clarkson, Annu. Rev. Pharmacol. Toxicol. 33 (1993) 545–571.
[16] N. Ballatori, Environ. Health Perspect. 110 (Suppl. 5) (2002) 689–694.
[17] R.E. Hoffmeyer, S.P. Singh, C.J. Doonan, A.R. Ross, R.J. Hughes, I.J. Pickering, G.N.
George, Chem. Res. Toxicol. 19 (2006) 753–759.
[18] T.W. Clarkson, J.B. Vyas, N. Ballatori, Am. J. Ind. Med. 50 (2007) 757–764.
[19] C.C. Bridges, C. Bauch, F. Verrey, R.K. Zalups, J. Am. Soc. Nephrol. 15 (2004)
663–673.
[20] C.C. Bridges, R.K. Zalups, Am. J. Pathol. 165 (2004) 1385–1394.
[21] I. Dalle-Donne, R. Rossi, D. Giustarini, R. Colombo, A. Milzani, Free Radic. Biol.
Med. 43 (2007) 883–898.
[22] A.J.L. Cooper, J.T. Pinto, P.S. Callery, Expert Opin. Drug Metab. Toxicol. 7 (2011)
891–910.
[23] A.J.L. Cooper, A. Meister, Comp. Biochem. Physiol. 69B (1981) 137–145.
[24] A.J.L. Cooper, Neurochem. Int. 44 (2004) 557–577.
[25] G. Ricci, M. Nardini, G. Federici, D. Cavallini, Eur. J. Biochem. 157 (1986) 57–63.
[26] M. Costa, B. Pensa, B. Di Costanzo, R. Coccia, D. Cavallini, Neurochem. Int. 10
(1987) 377–382.
[27] A.J.L. Cooper, M.W. Anders, Ann. N. Y. Acad. Sci. 585 (1990) 118–127.
[28] F. Rossi, Q. Han, R. Li, R. Li, M. Rizzi, J. Biol. Chem. 279 (2004) 50214–50220.
[29] A.J.L. Cooper, J.T. Pinto, B.F. Krasnikov, Z.V. Niatsetskaya, Q. Han, J. Li, D.
Vauzour, J.P.E. Spencer, Arch. Biochem. Biophys. 474 (2008) 72–81.
[30] D. Cavallini, G. Ricci, S. Duprè, L. Pecci, M. Costa, R.M. Matarese, B. Pensa, A.
Antonucci, S.P. Solinas, M. Fontana, Eur. J. Biochem. 202 (1991) 217–223.
[31] A.J.L. Cooper, M.J. Gross, J. Neurochem. 28 (1977) 771–778.
[32] J.N.M. Commandeur, I. Andreadou, M. Rooseboom, M. Out, L.J. de Leur, E. Groot,
N.P.E. Vermeulen, J. Pharmacol. Exp. Ther. 294 (2000) 753–761.
[33] D. Cavallini, C. De Marco, B. Mondovi, B.G. Mori, Enzymologia 22 (1960) 161–
173.
[34] A.E. Braunstein, E.V. Goryachenkova, Adv. Enzymol. Relat. Areas Mol. Biol. 56
(1984) 1–89.
In summary, we have demonstrated that cysteine S-conjugates of
mercuryin vitro area) substrates/inhibitors of GTK, and b) participate
in enzyme inactivation (e.g. cystathionine c-lyase). However, given
the high concentration of GSH in most tissues and the propensity of
mercury to undergo exchange reactions with sulfhydryl-containing
[35] C.W. Fearon, J.A. Rodkey, R.H. Abeles, Biochemistry 21 (1982) 3790–3794.
[36] Y. Matsuo, D.M. Greenberg, J. Biol. Chem. 234 (1959) 507–515.
[37] F.C. Brown, M.C. DeFoor, Eur. J. Biochem. 46 (1974) 317–322.
[38] Q. Han, J. Li, J. Li, Eur. J. Biochem. 271 (2004) 4804–4814.
[39] J.T. Pinto, B.F. Krasnikov, A.J.L. Cooper, J. Nutr. 136 (2005) S835–S841.
[40] A.J.L. Cooper, Anal. Biochem. 89 (1978) 451–460.
[41] J.T. Pinto, T. Khomenko, S. Szabo, G.D. McLaren, T.T. Denton, B.F. Krasnikov,
T.M. Jeitner, A.J.L. Cooper, J. Chromatogr, B. Analyt, Technol. Biomed. Life Sci.
877 (2009) 3434–3441.
[42] W. Washtien, A.J.L. Cooper, R.H. Abeles, Biochemistry 16 (1977) 460–463.
[43] D.L. Rabenstein, Acc. Chem. Res. 11 (1978) 100–107.
[44] I. Erni, G. Geier, Helv. Chim. Acta 62 (1979) 1007–1015.
[45] D.L. Rabenstein, M.T. Fairhurst, J. Am. Chem. Soc. 97 (1975) 2086–2092.
[46] K.E. Pitts, A.O. Summers, Biochemistry 41 (2002) 10287–10296.
[47] P. Di Lello, G.C. Benison, H. Valafar, K.E. Pitts, A.O. Summers, P. Legault, J.G.
Omichinski, Biochemistry 43 (2004) 8322–8332.
[48] M.C. Potter, G.I. Elmer, R. Bergeron, E.X. Albuquerque, P. Guidetti, H.Q. Wu, R.
Schwarcz, Neuropsychopharmacology 35 (2010) 1734–1742.
[49] K. Saito, S. Fujigaki, M.P. Heyes, K. Shibata, M. Takemura, H. Fujii, H. Wada, A.
Noma, M. Seishima, Am. J. Physiol. Renal Physiol. 279 (2000) F565–F572.
[50] J.I. Toohey, Anal. Biochem. 413 (2011) 1–7.
compounds, the a-keto acid products of the GTK reaction on Cys-S-
Hg-S-Cys and CH3Hg-S-Cys may become diluted within the GSH pool.
Nevertheless, we wish to emphasize that as a result of exposure to
mercury-containing amino acids and subsequent in vivo transforma-
tion, mercury may be more mobile in its ability to distribute among
various organic forms and to interact with more enzymes (as sub-
strates/inhibitors) than previously appreciated. Future studies on
the toxicity of mercury should take into account these biological
transformations.
Acknowledgments
[51] W. Birchmeier, K.J. Wilson, P. Christen, J. Biol. Chem. 248 (1973) 1751–1759.
[52] T.G. Kalogerakos, N.G. Oikonomakos, C.G. Dimitropoulos, I.A. Karni-Katsadima,
A.E. Evangelopoulos, Biochem. J. 167 (1977) 53–63.
[53] K. Pamp, T. Bramey, M. Kirsch, H. De Groot, F. Petrat, Free Radic. Res. 39 (2005)
31–40.
[54] G.G. Chang, R.Y. Hsu, Biochemistry 16 (1977) 311–320.
[55] L.K. Moran, J.M. Gutteridge, G.J. Quinlan, Curr. Med. Chem. 8 (2001) 763–772.
[56] B. Schmidt, L. Ho, P.J. Hogg, Biochemistry 45 (2006) 7429–7433.
[57] D. Summa, O. Spiga, A. Bernini, V. Venditti, R. Priora, S. Frosali, A. Margaritis, D.
Di Giuseppe, N. Niccolai, P. Di Simplicio, Proteins 69 (2007) 369–378.
[58] N. Ragunathan, F. Busi, B. Pluvinage, E. Sanfins, J.M. Dupret, F. Rodrigues-Lima,
J. Dairou, FEBS Lett. 584 (2010) 3366–3369.
[59] M.F. Frasco, J.P. Colletier, M. Weik, F. Carvalho, L. Guilhermino, J. Stojan, D.
Fournier, FEBS J. 274 (2007) 1849–1861.
[60] I. Ishii, N. Akahoshi, X.-N. Yu, Y. Kobayashi, K. Namekata, G. Komaki, H. Kimura,
Biochem. J. 381 (2004) 113–123.
[61] Z. Yin, H. Jiang, T. Syversen, J.B. Rocha, M. Farina, M. Aschner, J. Neurochem.
107 (2008) 1083–1090.
This work was supported by grants from the National Institutes of
Health RO1 [ES8421](to AJLC), RO1 [ES5980](to RKZ), RO1 [ES11288]
(to RKZ), NS062836 (to JL), RO3 [ES15511](to CCB), R15 [ES19991](to
CCB) and CA111842 (to JTP).
References
[1] Agency for Toxic Substances and Disease Registry: Toxicological Profile for
Mercury, TP-93/10 (United States Department of Health and Human Services,
2010).
[2] H.H. Harris, I.J. Pickering, G.N. George, Science 301 (2003) 1203.
[3] T.W. Clarkson, L. Magos, Crit. Rev. Toxicol. 36 (2006) 609–662.
[4] S.E. Schober, T.H. Sinks, R.L. Jones, P.M. Bolger, M. McDowell, J. Osterloh, E.S.
Garrett, R.A. Canady, C.F. Dillon, Y. Sun, C.B. Joseph, K.R. Mahaffey, J. Am. Med.
Assoc. 289 (2003) 1667–1674.
[5] M.A. McDowell, C.F. Dillon, J. Osterloh, P.M. Bolger, E. Pellizzari, R. Fernando, R.
Montes de Oca, S.E. Schober, T. Sinks, R.L. Jones, K.R. Mahaffey, Environ. Health
Perspect. 112 (2004) 1165–1171.
[62] M. Aschner, N.B. Eberle, S. Goderie, H.K. Kimelberg, Brain Res. 521 (1990) 221–
228.
[63] H.H. Tallan, S. Moore, W.H. Stein, J. Biol. Chem. 230 (1958) 707–716.
[6] K.R. Mahaffey, Trans. Am. Climatol. Assoc. 116 (2005) 127–153.