7502
D. C. Harrow6en et al. / Tetrahedron Letters 42 (2001) 7501–7502
electrophile for the preparation of aryl iodides and
hetaryl iodides from the corresponding organolithiums
(Scheme 1). Notably, reactions are easily accomplished,
reliable for a wide range of substrates and yields com-
pare favourably with the aforementioned procedures.4
2. For recent examples using iodine, see: (a) Ogawa, T.;
Kishimoto, T.; Kobayashi, K.; Ono, N. J. Chem. Soc.,
Perkin Trans. 1 1998, 529; (b) Goldfinger, M. B.; Crawford,
K. B.; Swager, T. M. J. Org. Chem. 1998, 63, 1676; (c) Hirt,
U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998, 63, 7674;
(d) Bailey, W. F.; Carson, M. W. J. Org. Chem. 1998, 63,
9960; (e) Stara, I. G.; Stary, I.; Kollarovic, A.; Teply, F.;
Saman, D.; Fiedler, P. Tetrahedron 1998, 54, 11209; (f)
Fukuyama, Y.; Yaso, H.; Nakamura, K.; Kodama, M.
Tetrahedron Lett. 1999, 44, 105; (g) Seki, M.; Furutani, T.;
Hatsuda, M.; Imashiro, R. Tetrahedron Lett. 2000, 41, 2149.
3. (a) van Tamelen, E. E.; Shamma, M. J. Am. Chem. Soc.
1954, 76, 2315; (b) Guenther, H. J.; Guntrum, E.; Jaeger,
V. Liebigs Ann. Chem. 1984, 15; (c) Wen, R.; Laronze, J.-Y.;
Levy, J. Heterocycles 1984, 22, 1061; (d) Detty, M. R.; Zhou,
F.; Friedman, A. E. J. Am. Chem. Soc. 1996, 118, 313.
4. All compounds gave satisfactory spectral and analytical
characteristics. At the request of a referee we have con-
ducted the following comparative studies using 1,2-
diiodoethane as the iodine electrophile. Thus, 56
proceeded in 69% yield; 78 proceeded in 55% yield; 1516
proceeded in <35% yield; 1718 proceeded in 60% yield.
The lithiation and iodination of 11 to 12 with iodine has
been reported to proceed in 90% yield (see: (a) Marti, T.;
Peterson, B. R.; Fuerer, A.; Mordasini-Denti, T.; Zarske, J.;
Jaun, B.; Diederich, F.; Gramlich, V. Helv. Chim. Acta 1998,
81, 109; (b) Essamkaoui, M.; Mayrargue, J.; Vierfond,
J.-M.; Reynet, A.; Moskowitz, H.; Thal, C. Synth. Commun.
1992, 22, 2723). The lithiation and iodination of 13 to 14
with iodine has been reported in yields ranging from 29 to
90% (see (c) Vallgarda, J.; Appelberg, U.; Arvidsson, L.-E.;
Hjorth, S.; Svensson, B. E.; Hacksell, U. J. Med. Chem.
1996, 39, 1485; (d) Gaertner, R. J. Am. Chem. Soc. 1952,
74, 4950; (e) Rossi, R.; Carpita, A.; Lezzi, A. Tetrahedron
1984, 40, 2773; (f) Ilagouma, A. T.; Dornand, J.; Liu, C. F.;
Zenone, F.; Mani, J. C.; Kamenka, J. M. Eur. J. Med. Chem.
1990, 25, 609.)
Several examples have been realised (Scheme 2) and in
each case products were formed in moderate to good
yield. Though this new procedure is primarily presented
as interesting curiosity, the ease with which it can be
effected makes it a worthwhile addition to existing
protocols.4 We are presently examining the reaction
with other readily available iodolactones in the hope of
suppressing the dominant side reaction, protonation.
Acknowledgements
The authors thank Pfizer Global Research and Devel-
opment and the EPSRC for their financial support
through an Industrial CASE award (to MITN).
References
1. For examples using 1,2-diiodoethane, see: (a) Simpson, M.
Ann. Chem. 1863, 127, 372; (b) Wittig, G.; Harborth, G.
Chem. Ber. 1944/1946, 77/79, 313; (c) Ronald, R. C.;
Lansinger, J. M.; Lillie, T. S.; Wheeler, C. J. J. Org. Chem.
1982, 47, 2541; (d) Cracknell, M. E.; Kabli, R. A.; McOmie,
J. F. W.; Perry, D. H. J. Chem. Soc., Perkin Trans. 1 1985,
115; (e) Kawase, T.; Asai, N.; Ogawa, T.; Oda, M. J. Chem.
Soc., Chem. Commun. 1990, 339; (f) Ziener, U.; Godt, A.
J. Org. Chem. 1997, 62, 6137; (g) Hoeger, S.; Meckenstock,
A.-D.; Mueller, S. Chem. Europ. J. 1998, 4, 2423; (h) Hensel,
V.; Schlueter, A. D. Eur. J. Org. Chem. 1999, 2, 451.