Paper
NJC
the turbid solution was filtered and a practical sample solution
was obtained. As shown in Fig. 10a, upon the addition of
7 S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee
and S. K. Ghosh, Angew. Chem., Int. Ed., 2013, 52, 2881.
8 J. Shen, J. Zhang, Y. Zuo, L. Wang, X. Sun, J. Li, W. Han and
R. He, J. Hazard. Mater., 2009, 163, 1199.
9 Y. Ma, S. Huang, M. Deng and L. Wang, ACS Appl. Mater.
Interfaces, 2014, 6, 7790.
À4
the practical sample solution into TG–PA (1.0 Â 10 M), the
fluorescence intensity of sensor TG–PA increased rapidly. The
bright blue fluorescence could be distinguished by the naked
eye under a UV lamp (365 nm), as shown in Fig. 10b. These
results indicated that sensor TG–PA could efficiently detect 10 A. Ding, L. M. Yang, Y. Y. Zhang, G. B. Zhang, L. Kong, X. J.
À
CN through fluorescent ‘‘turn-on’’ in a practical sample.
Zhang, Y. P. Tian, X. T. Tao and J. X. Yang, Chem. – Eur. J.,
014, 20, 12215.
2
1
1
1
1 K. M. Wollin and H. H. Dieter, Arch. Environ. Contam.
Toxicol., 2005, 49, 18.
2 G. He, H. Peng, T. Liu, M. Yang, Y. Zhang and Y. Fang,
J. Mater. Chem., 2009, 19, 7347.
3 X. Z. Song, S. Y. Song, S. N. Zhao, Z. M. Hao, M. Zhu,
X. Meng, L.-L. Wu and H.-J. Zhang, Adv. Funct. Mater., 2014,
Conclusions
In summary, a tripodal host compound TG based on a tris-
naphthalimide derivative was designed and synthesized. The
TG could self-assemble to a supramolecular system (S-TG) and
show aggregation-induced emission (AIE). Interestingly, S-TG
could selectively and sensitively detect picric acid (PA). More-
over, TG could form a stable TG–PA complex and act as a novel
supramolecular sensor for the fluorescence ‘‘turn-on’’ detection of
24, 4034.
1
4 Y. Takashima, V. M. Martinez, S. Furukawa, M. Kondo,
S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto
and S. Kitagawa, Nat. Commun., 2011, 2, 168.
À
À
CN . The recognition mechanism of S-TG for PA and TG–PA for
15 Y. Zhang, T. G. Zhan, T. Y. Zhou, Q. Y. Qi, X. N. Xu and
CN is based on a novel guest competitive controlled aggregation-
X. Zhao, Chem. Commun., 2016, 52, 7588.
induced emission (AIE) process. Meanwhile, test kits based on
1
6 A. S. G. Liu, D. Luo, N. Li, W. Zhang, J. L. Lei, N. B. Li and
H. Q. Luo, ACS Appl. Mater. Interfaces, 2016, 8, 21700.
7 S. Shanmugaraju, C. Dabadie, K. Byrne, A. J. Savyasachi,
D. Umadevi, W. Schmitt, J. A. Kitchen and T. Gunnlaugsson,
Chem. Sci., 2017, 8, 1535.
S-TG and TG–PA for convenient fluorescence detection of PA and
À
À
CN were prepared. Moreover, TG–PA can detect CN through
fluorescence in a practical sample. It is worth mentioning that
the novel recognition mechanism based on the guest competi-
tive controlled aggregation-induced emission (AIE) process pro-
vides a new way for the design of fluorescent sensors.
1
1
8 V. Bhalla, A. Gupta and M. Kumar, Org. Lett., 2012, 14,
3112.
1
9 M. C. Rong, L. P. Lin, X. H. Song, T. T. Zhao, Y. X. Zhong,
J. W. Yan, Y. R. Wang and X. Chen, Anal. Chem., 2015,
Conflicts of interest
8
7, 1288.
0 B. Gogoi and N. S. Sarma, ACS Appl. Mater. Interfaces, 2015,
, 11195.
There are no conflicts to declare.
2
7
Acknowledgements
21 S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer, Chem.
Commun., 2015, 51, 7207.
This work was supported by the National Natural Science
Foundation of China (NSFC) (No. 21574104; 21662031; and
2
2
2
2
2 V. Bereau, C. Duhayon and J. P. Sutter, Chem. Commun.,
2014, 50, 12061.
21661028) and the Program for Changjiang Scholars and Inno-
3 D. Dinda, A. Gupta, B. K. Shaw, S. Sadhu and S. K. Saha, ACS
Appl. Mater. Interfaces, 2014, 6, 10722.
4 K. K. Kartha, S. S. Babu, S. Srinivasan and A. Ajayaghosh,
J. Am. Chem. Soc., 2012, 134, 4834.
5 S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee
and S. K. Ghosh, Angew. Chem., Int. Ed., 2013, 52, 2881.
vative Research Team in the University of Ministry of Education
of China (IRT 15R56).
Notes and references
1
2
3
L. L. Zhang, Z. X. Kang, X. L. Xin and D. F. Sun, CrystEngComm, 26 J. Ma, T. Lin, X. Pan and W. Wang, Chem. Mater., 2014,
016, 18, 193.
26, 4221.
W. Wang, J. Yang, R. M. Wang, L. L. Zhang, J. F. Yu and 27 H. T. Feng and Y. S. Zheng, Chem. – Eur. J., 2014, 20, 195.
2
D. F. Sun, Cryst. Growth Des., 2015, 15, 2589.
Y. Salinas, R. M. Martinez, M. D. Marcos, F. Sancenon,
28 N. Dey, S. K. Samanta and S. Bhattacharya, ACS Appl. Mater.
Interfaces, 2013, 5, 8394.
A. M. Costero, M. Parra and S. Gil, Chem. Soc. Rev., 2012, 29 K. Dhanunjayarao, V. Mukundam and K. Venkatasubbaiah,
1, 1261.
Inorg. Chem., 2016, 55, 11153.
M. E. Germain and M. J. Knapp, Chem. Soc. Rev., 2009, 30 Z. C. Xu, X. Q. Chen, H. N. Kim and J. Y. Yoon, Chem. Soc.
8, 2543. Rev., 2010, 39, 127.
B. O. Okesola and D. K. Smith, Chem. Soc. Rev., 2016, 31 S. Vallejos, P. Estevez, F. C. Garcia, F. Serna, J. L. de la Pena
5, 4226. and J. M. Garcia, Chem. Commun., 2010, 46, 7951.
Y. Yao, M. Xue, J. Chen, M. Zhang and F. Huang, J. Am. 32 W. J. Qu, W. T. Li, H. L. Zhang, T. B. Wei, Q. Lin, H. Yao and
4
4
5
6
3
4
Chem. Soc., 2012, 134, 15712.
Y. M. Zhang, Sens. Actuators, B, 2017, 241, 430.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019