10.1002/asia.201701057
Chemistry - An Asian Journal
FULL PAPER
Gryko, Chem. Asian J.,2012, 7, 2656-2661; g) C. Zhao, X. Li,
F. Wang, Chem. Asian J., 2014, 9, 1777-1781.
Under a nitrogen atmosphere, to a solution of compound 2 (60 mg, 0.24
mmol) in dried CH2Cl2 (20 mL) at 0 ºC, BBr3 (0.31 mL, 1M, 0.31 mmol) was
added slowly with a syringe. After stirring for 6 h, the solution was
evaporated under vacuum. The residue was extracted sequentially with
water (10 mL), CH2Cl2 (3 × 10 mL), dried (MgSO4) and evaporated under
vacuum. The crude product purified by flash chromatography eluting with
1:2 EtOAc/hexane to afford 8-HB-2 (32 mg, 56%) as white solid. 1H NMR
(400 MHz, CDCl3): δ 12.01 (br, 1H), 8.43 (d, J = 5.2 Hz, 1H), 7.71–7.66 (m,
1H), 7.32 (d, J = 8.0 Hz, 1H), 7.18–7.04 (m, 4H), 6.86–6.82 (m, 1H), 3.04–
3.01 (m, 2H), 3.00–2.88 (m, 2H), 2.11–2.04 (m, 2H). 13C NMR (100 MHz,
CDCl3): δ 155.43, 154.74, 146.70, 140.39, 137.49, 135.44, 128.83, 128.49,
128.19, 122.49, 121.45, 120.40, 119.89, 43.02, 37.79, 22.69. MS (EI,
70eV): m/z (relative intensity) 237 (M+, 100); HRMS calcd. for C16H15NO
237.1154, found 237.1146.
[5]
[6]
a) J. Heldt, D. Gormin, M. Kasha, Chem. Phys. 1989, 136, 321-
334; b) M. L. Martinez, S. L. Studer, P. T. Chou, J. Am. Chem.
Soc. 1991, 113, 5881-5883; c) S. M. Andrade, S. M. B. Costa,
Phys. Chem. Chem. Phys. 1999, 1, 4213-4218; d) J. Wakita, S.
Inoue, N. Kawanishi, S. Ando, Macromolecules 2010, 43, 3594-
3605.
a) M. L. Martinez, W. C. Cooper, P.-T. Chou, Chem. Phys. Lett.
1992, 193, 151-154; b) K.-Y. Chen, C.-C. Hsieh, Y.-M. Cheng,
C.-H. Lai, P.-T. Chou, Chem. Commun. 2006, 4395-4397; c) J.
Piechowska, D. T. Gryko, J. Org. Chem. 2011, 76, 10220-
10228; d) J. Piechowska, K. Virkki, B. Sadowski, H.
Lemmetyinen, N. V. Tkachenko, D. T. Gryko, J. Phys. Chem. A.
2014, 118, 144-151.
a) A. Heller, D. L. Williams, J. Phys. Chem. 1970, 74, 4473-
4480; b) W. Frey, F. Laermer, T. Elsaesser, J. Phys. Chem.
1991, 95, 10391-10395; c) J. Seo, S. Kim, Y.-S. Lee, O.-H.
Kwon, K. H. Park, S. Y. Choi, Y. K. Chung, D.-J. Jang, S. Y.
Park, J. Photochem. Photobiol. A: Chem 2007, 191, 51-58; d)
S. Park, J. E. Kwon, S. Y. Park, Phys. Chem. Chem. Phys. 2012,
14, 8878-8884; e) T. Shida, T. Mutai, K. Araki, CrystEngComm
2013, 15, 10179-10182.
a) G. Wiosna, I. Petkova, M. S. Mudadu, R. P. Thummel, J.
Waluk, Chem. Phys. Lett. 2004, 400, 379-383; b) Z. Zhang, Y.-
H. Hsu, Y.-A. Chen, C.-L. Chen, T.-C. Lin, J.-Y. Shen, P.-T.
Chou, Chem. Commun. 2014, 50, 15026-15029.
[7]
[8]
Computational Methodology
The density functional theory (DFT) method was utilized to optimize the
geometries of the singlet ground states, and time-dependent density
functional theory (TDDFT) methodology was employed to calculate the
excited-state structures and related optical properties of all molecules with
a B3LYP hybrid function in combination with a polarizable continuum
model (PCM) in cyclohexane. The 6-31+G(d,p) basis set was employed
for all atoms.[18]
[9]
T. Arai, M. Moriyama, K. Tokumaru, J. Am. Chem. Soc., 1994,
116, 3171-3172.
[10]
[11]
K.-Y. Chen, Y.-M. Cheng, C.-H. Lai, C.-C. Hsu, M.-L. Ho, G.-H.
Lee, P.-T. Chou, J. Am. Chem. Soc. 2007, 129, 4534-4535.
Y.-H. Hsu, Y.-A. Chen, H.-W. Tseng, Z. Zhang, J.-Y. Shen, W.-
T. Chuang, T.-C. Lin, C.-S. Lee, W.-Y. Hung, B.-C. Hong, S.-H.
Liu, P.-T. Chou, J. Am. Chem. Soc. 2014, 136, 11805-11812.
a) X. Li, Y.-D. Wu, D. Yang, Acc. Chem. Res. 2008, 41, 1428-
1438; b) X. Li, D. Yang, Chem. Commun. 2006, 3367-3379.
C.-C. Hsieh, P.-T. Chou, C.-W. Shih, W.-T. Chuang, M.-W.
Chung, J. Lee, T. Joo, J. Am. Chem. Soc. 2011, 133, 2932-
2943.
P. Yang, Q. Zhang, W. Sun, Res. Chem. Intermed. 2012, 38,
1063-1068.
G. A. Parada, T. F. Markle, S. D. Glover, L. Hammarström, S.
Ott, B. Zietz, Chem. Eur. J., 2015, 21, 6362-6366.
M. Iwao, T. Takeuchi, N. Fujikawa, T. Fukuda, F. Ishibashi,
Tetrahedron Letters 2003, 44, 4443-4446.
T. N. Y. Hoang, M. Humbert-Droz, T. Dutronc, L. Guénée, C.
Besnard, C. Piguet, Inorg. Chem., 2013, 52, 5570-5580.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.
E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.
D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
C. Gonzalez, J. A. Pople, Gaussian 09, Revision A.02,;
Gaussian, Inc.: Wallingford CT, 2009.. .
Acknowledgements
[12]
[13]
P.T.C. thanks the Ministry of Science and Technology, Taiwan for
financial support.
Keywords: proton transfer • hydrogen bonds • single crystal •
fluorescence • eight-membered ring
[14]
[15]
[16]
[17]
[18]
[1]
a) J. E. Kwon, S. Y. Park, Adv. Mater. 2011, 23, 3615-3642; b)
J. Zhao, S. Ji, Y. Chen, H. Guo, P. Yang, Phys. Chem. Chem.
Phys. 2012, 14, 8803-8817; c) A. P. Demchenko, K.-C. Tang,
P.-T. Chou, Chem. Soc. Rev. 2013, 42, 1379-1408; d) V. I.
Tomin, A. P. Demchenko, P.-T. Chou, J. Photochem. Photobiol.
C: Photochem. Rev. 2015, 22, 1-18.
[2]
[3]
a) P. K. Sengupta, M. Kasha, Chem. Phys. Lett. 1979, 68, 382-
385; b) P. Chou, D. McMorrow, T. J. Aartsma, M. Kasha, J.
Phys. Chem. 1984, 88, 4596-4599.
a) W.-S. Yu, C.-C. Cheng, Y.-M. Cheng, P.-C. Wu, Y.-H. Song,
Y. Chi, P.-T. Chou, J. Am. Chem. Soc. 2003, 125, 10800-
10801; b) T.-Y. Lin, K.-C. Tang, S.-H. Yang, J.-Y. Shen, Y.-M.
Cheng, H.-A. Pan, Y. Chi, P.-T. Chou, J. Phys. Chem. A. 2012,
116, 4438-4444; c) Y. Chi, B. Tong, P.-T. Chou, Coord. Chem.
Rev. 2014, 281, 1-25.
[4]
a) S. Barman, S. K. Mukhopadhyay, S. Biswas, S. Nandi, M.
Gangopadhyay, S. Dey, A. Anoop, N. D. Pradeep Singh,
Angew. Chem. Int. Ed., 2016, 55, 4194-4198; b) B.
Bhattacharya, A. Halder, L. Paul, S. Chakrabarti, D. Ghoshal,
Chem. Eur. J., 2016, 22, 14998-15005; c) J. Cheng, D. Liu, L.
Bao, K. Xu, Y. Yang, K. Han, Chem. Asian J., 2014, 9, 3215-
3220; d) X. Wang, Z.-Z. Li, S.-F. Li, H. Li, J. Chen, Y. Wu, H.
Fu, Adv. Opt. Mater., 2017, 5, 1700027; e) W. Zhang, Y. Yan,
J. Gu, J. Yao, Y. S. Zhao, Angew. Chem. Int. Ed., 2015, 54,
7125-7129; f) M. Tasior, V. Hugues, M. Blanchard-Desce, D. T.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.