11688 J. Phys. Chem. B, Vol. 104, No. 49, 2000
Ishida et al.
(9) Bumm, L. A.; Arnold, J. J.; Dunbar, T. D.; Allara, D. L.; Weiss,
P. S. J. Phys. Chem. 1999, B103, 8122.
(10) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.
Science 1997, 278, 252.
(11) Epstein, A. J. MRS Bulletin 1997, 22, 16.
(12) Stranick, S. J.; Parikh, A. N.; Allara, D. L.; Weiss, P. S. J. Phys.
Chem. 1994, 98, 11136.
(13) Bumm, L. A.; Arnold, J. J.; Charles, L. S.; Dunbar, T. D.; Allara,
D. L.; Weiss, P. S. J. Am. Chem. Soc. 1999, 121, 8017.
(14) Tamada, K.; Hara, M.; Sasabe H.; Knoll, W. Langmuir 1997, 13,
1558.
(15) Ishida, T.; Yamamoto, S.-I.; Mizutani, W.; Motomatsu, M.;
Tokumoto, H.; Hokari, H.; Azehara, H.; Fujihira, M. Langmuir 1997, 13,
3261.
(16) Hobara, D.; Sasaki, T.; Imabayashi, S.; Kakiuchi, T. Langmuir 1999,
15, 5073.
(17) Nishida, N.; Hara, M.; Sasabe, H.; Knoll, W. Jpn J. Appl. Phys.
1997, 36, 2379.
(18) Ishida T.; Mizutani, W.; Akiba, U.; Umemura, K.; Inoue, A.; Choi,
N.; Fujihira, M.; Tokumoto, H. J. Phys. Chem. 1999, B103, 1686.
(19) Mizutani, W.; Ishida, T.; Tokumoto, H.; Jpn. J. Appl. Phys. 1999,
38, 3892.
(20) Ishida, T.; Mizutani, W.; Tokumoto, H.; Choi, N.; Akiba, U.;
Fujihira, M. J. Vac. Sci. Technol. 2000, A18, 1437.
(21) Ishida, T.; Choi, N.; Mizutani, W.; Tokumoto, H.; Kojima, I.;
Azehara, H.; Akiba, U.; Hokari, H.; Fujihira, M. Langmuir 1999, 15, 6799.
(22) Samanta, M. P.; Tian, W.; Datta, S.; Henderson, J. I.; Kubiak, C.
P. Phys. ReV. 1996, B53, R7626.
(23) Magoga, M.; Joachim, C. Phys. ReV. 1999, B59, 16011.
(24) Tao, Y.-T.; Wu, C.-C.; Eu, J.-Y.; Lin, W.-L.; Wu, K.-C.; Chen, C.
Langmuir 1997, 13, 4018.
conjugated molecules. Our experimental data leads to the
following conclusions.
(i) The measured height of the conjugated molecular domains
depended on their lateral sizes, in the case of conjugated
molecules with a methylene group between the sulfur and the
phenyl rings. By analyzing size dependence on the height of
the conjugated molecular domain, we could estimate the
electronic conductivity of the molecular domains. To increase
the vertical conduction of molecular domains, a methylene group
is necessary between the sulfur and aromatic rings. The obtained
single molecular resistances are in the order TP3 > TP1 > C9
g BP1. In the cases of TP0 and BP0 without any methylene
group, strong dependences were not observed, suggesting that
the increase in the vertical conduction of the molecular domain
is not so strong.
(ii) The LBH values on the conjugated molecular domains
in all the cases were larger than that on the C9 surface. The
LBH values were not dependent on the domain size, while the
height difference changed with the domain size in the case of
conjugated molecules such as TP1. These data suggest that the
increase in the vertical conductivity is not due to the lowering
of the local barrier height, but can likely be attributed to the
conjugated molecular adsorption.
(iii) The XPS C(1s) satellite peaks and UPS spectra of TP1
and TP3 are almost identical, indicating that the carrier densities
among these SAMs are almost the same. If the vertical
conduction increase with the decrease in the number of
methylene groups is attributed to the doping effect, then the
shape and intensity of both the satellite peaks and valence bands
should be different. Thus, the reason for the higher electrical
conduction might be due to the higher carrier transfer probability
through the conjugated molecules with one methylene group.
(25) Sabatani, E.; Cohne-Boulakia, J.; Bruening, M.; Rubinstein, I.
Langmuir 1993, 9, 2974.
(26) Himmel, H.-J.; Terfort, A.; Wo¨ll, Ch. J. Am. Chem. Soc. 1998,
120, 12069.
(27) [1,1′:4′,1′′-terphenyl]-4-propanethiol 1H NMR (400 MHz, CDCl3)
δ 1.39 (t, 1H), 1.99 (m, 2H) 2.58 (q, 2H) 2.79 (t, 2H) 7.26-7.67 (m, 13H)
13C NMR δ 24.02 (CH2) 33.59 (CH2) 35.42 (CH2) 127.01-127.46 (benzene
ring) 128.79 (ring), 128.86 (ring), 138.27 (ring) 139.88-140.71 (ring).
(28) Sasaki, M.; Komai, M.; Ozawa, R.; Yamamoto, S. Jpn. J. Appl.
Phys. 1998, 37, 6186.
(29) Poirier, G. E.; Tarlov, M. J. Langmuir 1994, 10, 2853.
(30) Delamarche, E.; Michel, B.; Gerber, C.; Anselmetti, D.; Guntherodt,
H.-J.; Wolf, H.; Ringsdorf, H. Langmuir 1994, 10, 2869.
(31) Wo¨ll, Ch.; Chiang, S.; Wilson, R. J.; Lippel, P. H. Phys. ReV. 1989,
B39, 7988.
(32) Sellers, H.; Ulman, A.; Shindman, Y.; Eilers, J. E. J. Am. Chem.
Soc. 1993, 115, 9389.
Acknowledgment. This work was supported by the New
Energy and Industrial Development Organization (NEDO) of
Japan. We thank Hodogaya Contact Lab. for synthesizing some
useful conjugated molecules. We gratefully acknowledge Drs.
I. Kojima and N. Fukumoto (National Institute of Materials and
Chemical Research, Tsukuba, Japan) for their helpful sugges-
tions and experimental assistance in the XPS measurements.
We also thank Dr. S. P. Jarvis (JRCAT-NAIR) for her help in
English correction.
(33) Poirier, G. E. Langmuir 1997, 13, 2019.
(34) Hara, M.; Sasabe, H.; Knoll, W. Thin Solid Films 1996, 273, 66.
(35) Bain, C. D.; Troughton, E. B.; Tao Y.-T.; Evall, J.; Whitesides, G.
M.; Nuzzo; J. Am. Chem. Soc. 1989, 111, 321.
(36) Nakanishi, S.; Tsukada, M. Jpn. J. Appl. Phys. 1998, 37, 3805.
Nakanishi, S.; Tsukada, M. Jpn. J. Appl. Phys. 1998, 37, L1400. Nakanishi,
S.; Tsukada, M. Surf. Sci. 1999, 438, 305.
(37) Zeppenfeld, P.; Lutz, C. P.; Eigler, D. M. Ultramicroscopy 1992,
42-44, 128.
(38) Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin,
R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Phys. ReV. 1996, B54,
R14321. Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L. Appl.
Phys. Lett. 1997, 71, 3528.
References and Notes
(1) Carter, F. L. Molecular Electric DeVices; Marcel Dekker: New
York, 1982.
(2) Iijima, S. Nature 1991, 354, 56.
(3) Tour, J. M.; Jones, L., II.; Pearson, D. L.; Lamba, J. J.; Burgin, T.
P.; Whitesides, G. M.; Allara, D. L.; Parkh, A. N.; Atre, S. V. J. Am. Chem.
Soc. 1995, 117, 9529.
(39) Zehner, R. W.; Parsons, B. F.; Hsung, R. P.; Sita, L. R. Langmuir
1999, 15, 1121.
(40) Narioka, S.; Ishii, H.; Yoshimura, D.; Sei, M.; Ouchi, Y.; Seki,
K.; Hasegawa, S.; Miyazaki, T.; Harima, Y.; Yamashita, K. Appl. Phys.
Lett. 1995, 67, 1899.
(41) Benning, P. J.; Poirier, D. M.; Ohno, T. R.; Chen, Y.; Jost, M. B.;
Stepniak, F.; Kroll, G. H.; Weaver, J. H.; Fure, J.; Smalley, R. E. Phys.
ReV. 1992, B45, 6899.
(42) Enkvist, Ch.; Lunell, S.; So¨jgren, B.; Bru¨hwiler, P. A.; Svensson,
S. J. Chem. Phys. 1997, 103, 6333.
(4) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Jones,
L., II.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996, 271, 1705.
Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.;
Burgin, T. P.; Jones, L., II.; Allara, D. L.; Tour J. M.; Weiss P. S. J. Am.
Chem. Soc. 1998, 120, 2721.
(5) Leatherman, G.; Durantini, E. N.; Gust, D.; Moore, T. A.; Moore,
A. L.; Stone, S.; Zhou, Z.; Lez, P.; Liu, Y. Z.; Lindsay, S. M. J. Phys.
Chem. 1999, B103, 4006.
(43) Onoe, J.; Nakao, A.; Takeuchi, K. Phys. ReV. 1997, B55, 10051.
(44) Bain, C. D.; Whitesides, G. M. J. Phys. Chem. 1989, 93, 1670.
(45) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999,
286, 1550.
(46) Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc.
2000, 122, 3015.
(6) Kelly, K. F.; Shom, T.-S.; Lee, T. R.; Halas, N. J. J. Phys. Chem.
1999, B103, 8639.
(7) Kergueris, C.; Bourgoin, J. P.; Palacin, S. Nanotechnology 1999,
10, 8.
(8) Salmeron, M.; Neubauer, G.; Folch, A.; Tomitori, M.; Ogletree,
D. F.; Sautet, P. Langmuir 1993, 8, 3600.