6
550
Y. Landais, E. Zekri / Tetrahedron Letters 42 (2001) 6547–6551
3. (a) Woodward, R. B.; et al. J. Am. Chem. Soc. 1981, 103,
Si(i-Pr)3
OH
OBn
O3
O
3210–3212; (b) Corey, E. J.; Cheng, X.-M. The Logic of
Chemical Synthesis; Wiley Interscience: Toronto, 1989.
4. (a) Krow, G. R. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds. The Baeyer–Villiger reac-
tion; Pergamon Press: Oxford, 1991; Vol. 7, pp. 671–688;
CH Cl -MeOH (5:1)
2
2
HO
-
78°C, 1 h
then Me S
O
H
OBn
H
2
Si(i-Pr)3
16 (60%)
1
5
(
b) Lee, D. G.; Chen, T. In Comprehensive Organic
Synthesis; Trost, B. M.; Fleming, I., Eds. Cleavage reac-
tions; Pergamon Press: Oxford, 1991; Vol. 7, pp. 541–591;
Scheme 6.
(
c) Schreiber, S. L.; Claus, R. E.; Reagan, J. Tetrahedron
group efficiently prevents the formation of the mesylate
b to silicon.
Lett. 1982, 23, 3867–3870; (d) Acena, J. L.; Arjona, O.;
Leon, M.; Plumet, J. Tetrahedron Lett. 1996, 37, 8957–
8
960; (e) Arjona, O.; Menchaca, R.; Plumet, J. J. Org.
Finally, based on the above observation, it was decided
to use purposely the unique steric bulk of the TIPS
Chem. 2001, 66, 2400–2413; (f) Donohoe, T. J.; Raoof,
A.; Linney, I. D.; Helliwell, M. Org. Lett. 2001, 3,
8
18,20
group to prepare fragile a-silylaldehydes.
These
61–864; (g) Taber, D. F.; Nakajima, K. J. Org. Chem.
001, 66, 2515–2517.
aldehydes are valuable intermediates which can be con-
verted stereoselectively into allylsilanes through Wittig
2
5
. (a) Millward, D. B.; Sammis, G.; Waymouth, R. M. J.
Org. Chem. 2000, 65, 3902–3909; (b) Lautens, M.; Rovis,
T. J. Am. Chem. Soc. 1997, 119, 11090–11091; (c) Laut-
ens, M.; Klute, W. Angew. Chem., Int. Ed. Engl. 1996, 35,
2
1a
reactions or into b-hydroxysilanes through addition
2
1b
of organometallic reagents.
Selective monobenzyla-
tion of the diol 8d, away from the TIPS group, thus led
to the alcohol 15 (40%) which was submitted to the
4
42–445.
6. (a) Angelaud, R.; Landais, Y. J. Org. Chem. 1996, 61,
202–5203; (b) Angelaud, R.; Landais, Y.; Schenk, K.
ozonolysis (Scheme 6). Reductive work-up with Me2S
as above furnished the lactol 16 in 60% yield as one
5
diastereomer having the required a-silylaldehyde
Tetrahedron Lett. 1997, 38, 1407–1411; (c) Angelaud, R.;
Landais, Y. Tetrahedron Lett. 1997, 38, 8841–8844; (d)
Angelaud, R.; Landais, Y.; Parra-Rapado, L. Tetra-
hedron Lett. 1997, 38, 8845–8848; (e) Landais, Y. Chimia
moiety.
As a summary, we have described here a short, general
and stereocontrolled access to highly functionalised
cyclic and acyclic intermediates, using a Birch reduc-
tion–dihydroxylation–ozonolysis sequence starting from
simple arenes. As shown with lactols 10a–c, otherwise
difficult to control quaternary stereogenic centres can
be installed stereoselectively in only four steps from
inexpensive aromatic substrates. Application of this
methodology to the synthesis of naturally occurring
tetrahydrofurans is now underway.
1998, 52, 104–111; (f) Angelaud, R.; Babot, O.; Charvat,
T.; Landais, Y. J. Org. Chem. 1999, 64, 9613–9624; (g)
Landais, Y.; Parra-Rapado, L. Eur. J. Org. Chem. 2000,
2
. (a) Kolb, H. C.; vanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483–2547; (b) Kolb, H. C.;
Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc.
, 401–418.
7
1
994, 116, 1278–1291.
. (a) Rabideau, P. W.; Marcinow, Z. Org. React. 1992, 42,
–334; (b) Taber, D. F.; Bhamidipati, R. S.; Yet, L. J.
8
1
Org. Chem. 1995, 60, 5537–5539; (c) Eaborn, C.; Jackson,
R. A.; Pearce, R. J. Chem. Soc., Perkin Trans. 1 1974,
Acknowledgements
2055–2061.
9. Roberson, C. W.; Woerpel, K. A. Org. Lett. 2000, 2,
We thank the Region Aquitaine and the CNRS for
their financial support. We are also indebted to Dr. G.
Lessenne and Dr. P. Clavel for their help during elec-
trochemical reductions.
621–623.
10. Compound 8a was readily separated from the minor
diastereomer through crystallisation.
11. Assumption on the absolute configuration of 8a was
7a,b
based on Sharpless mnemonic device
and is consistent
with results obtained recently during AD reaction on
related dienes, see: Corey, E. J.; Noe, M. C. J. Am. Chem.
Soc. 1994, 118, 11038–11053.
References
1
. (a) Mulzer, J. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 1, pp. 33–97; (b) Atkinson, R.
S. In Stereoselective Synthesis; J. Wiley & Sons: New
York, 1995; (c) Hoffmann, R. W. Angew. Chem., Int. Ed.
12. Eecker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl.
1996, 35, 448–450.
1
13. H NMR of the bis-acetonide protected tetrol showed
that it is meso, indicating that the second dihydroxylation
also took place anti relative to the silicon group. The
bis-acetonide could not be separated from the monoace-
tonide 11b and was thus isolated after the ozonolysis of
11b (Scheme 5).
2
000, 39, 2054–2070.
. (a) Misske, A. M.; Hoffmann, R. W. Chem. Eur. J. 2000,
, 3313–3320; (b) Vogel, P.; Cossy, J.; Plumet, J.; Arjona,
2
6
O. Tetrahedron 1999, 55, 13521–13642; (c) Chiu, P.;
Lautens, M. Top. Curr. Chem. 1997, 190, 1–85; (d) Woo,
S.; Keay, B. A. Synthesis 1996, 669–686; (e) Lautens, M.
Synlett 1993, 177–185; (f) Paterson, I.; Mansuri, M. M.
Tetrahedron 1985, 41, 3569–3624.
14. This may indicate that a kinetic amplification operates
during the dihydroxylation process. A careful investiga-
tion of the possible implication of this phenomenon in
our desymmetrisation process is currently underway. For
a closely related example of kinetic amplification, see: