10.1002/anie.201801575
Angewandte Chemie International Edition
COMMUNICATION
Atomic force microscopy (AFM) imaging contributes to clarify
the differences found in the supramolecular polymerization of 1
and 2 and to stablish structural rules to control the consecution of
SSP. AFM images of 1 show the formation of bundles of short,
helical fibers of 4.5 Å demonstrating the low trend of the fibrillary
structures of 1 to pack (Figure 5a, 5b and S12). The AFM images
of 2 show a dense network of superhelical structures that strongly
bundle into thick filaments of several micrometers length and
minimal heights of 12 Å (Figure 5c, 5d and S13). The AFM images
of 2 demonstrate the strong tendency of this unit to undergo a
preferred hierarchical self-assembly that rapidly shifts all the
equilibria involved in its aggregation. The high stability of the final
aggregates results in a rapid shift along the energy landscape
from the monomers to the superhelical aggregates (Figure 1d).
However, in 2, the formation of the H-bonds between the outer
amides cancels the conformational freedom of the peripheral
units that favors, firstly, a efficient -stacking of the central
perylene moiety and, in addition, the disposition of the external
paraphinic chains to interdigitate. The dissimilar packing of the
self-assembling units and the further intertwining of the external
chains produce a hierarchical process that finally generates
superhelical structures.[14] The results presented herein validate
that a fine-tuned molecular design determines the out-of-
equilibrium outcome during the supramolecular polymerization
and allow stablishing some basic rules about the structural
requirements of a self-assembly unit necessary to experience a
efficient SSP that yields supramolecular polymers of controlled
size and polydispersity tuning the different hierarchical levels of
organization.
Acknowledgements
Financial support by the MINECO of Spain (CTQ2014-53046-P,
CTQ2017-82706-P)
and
the Comunidad de Madrid
(NanoBIOSOMA, S2013/MIT-2807) is acknowledged. E. E. G. is
grateful to Universidad Complutense de Madrid for a predoctoral
grant.
Keywords: hierarchy • out-of-equilibrium • pathway complexity •
seeded self-assembly • supramolecular polymers
[1]
a) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813-817; b) T.
F. A. de Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R.
P. Sijbesma, E. W. Meijer, Chem. Rev. 2009, 109, 5687-5754; c) F.
Aparicio, F. García, L. Sánchez, Encyclopedia of Polymer Science and
Technology (Ed. M. Peterca), Wiley, Hoboken, 2012, pp. 549–578; d) C.
Rest, R. Kandanelli, G. Fernández, Chem. Soc. Rev. 2015, 44, 2543-
2572.
[2]
[3]
a) X. Wang, G. Guerin, H. Wang, Y. Wang, I. Manners, M. A. Winnik,
Science 2007, 317, 644–647; b) J. B. Gilroy, T. Gädt, G. R. Whittell, L.
Chabanne, J. M. Mitchels, R. M. Richardson, M. A. Winnik, I. Manners,
Nat. Chem. 2010, 2, 566–570.
Figure 4. Height (a and c) and phase (b and d) AFM images of the helical
aggregates formed by the supramolecular polymerization of 1 (a and b) and 2
(c and d) (cT= 10 M; mica, 298 K; z scale = 7 and 60 nm for (a) and (c),
respectively).
a) R. D. Mukhopadhyay, A. Ajayaghosh, Science 2015, 349, 241–242;
b) R. Deng, X. Liu, Nat. Chem. 2015, 7, 472–473; c) D. van der Zwaag,
T. F. A. de Greef, E. W. Meijer, Angew. Chem. Int. Ed. 2015, 54, 8334–
8336; Angew. Chem. 2015, 127, 8452–8454; d) E. Mattia, S. Otto, Nat.
Nanotechnol. 2015, 10, 111–119.
[4]
[5]
a) A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M.
Hermans, Chem. Soc. Rev. 2017, 46, 5476-5490; b) P. A. Korevaar, S.
J. George, A. J. Markvoort, M. M. J.; Smulders, P. A. J.; Hilbers, A. P. H.
J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492–
496.
In summary, we report herein how slight structural changes in
the chemical structure of N-annulated perylenes produce drastic
changes in the supramolecular polymerization outcome. The
synergy of all the experimental data obtained from 1 and 2 allows
extracting some basic rules about the molecular requirements of
a self-assembling unit to develop a SSP. In 1, the formation of the
intermolecular H-bonds between the amide groups induces a
conformational freedom of the lateral aromatic wedges. This lack
a) S. Ogi, K. Sugiyasu, S. Manna, S. Samitsu, M. Takeuchi, Nat. Chem.
2014, 6, 188–195; b) S. Ogi, V. Stepanenko, K. Sugiyasu, M. Takeuchi,
F. Würthner, J. Am. Chem. Soc. 2015, 137, 3300–3307; c) S. Ogi, K.
Matsumoto, S. Yamaguchi, Angew. Chem. Int. 2018, 57, DOI:
10.1002/anie.201712119; d) J. S. Valera, R. Gómez, L. Sánchez, Small
2018, 13, 1702437.
1
of interaction is shown by the concentration dependent H NMR
experiments. Besides, this conformational freedom provokes a
less efficient -stacking of the central aromatic skeleton as well
as a lower trend of the helical structures to interdigitate.
Compound 1 forms off-pathway intermediate aggregates that
evolve to afford on-pathway helical aggregates. This
transformation can be accelerated by a seeding process.
[6]
a) J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, T. Aida, Science 2015,
347, 646–651; b) A. Aliprandi, M. Mauro, L. De Cola, Nat. Chem. 2016,
8, 10–15; c) M. Endo, T. Fukui, S. H. Jung, S. Yagai, M. Takeuchi, K.
Sugiyasu, J. Am. Chem. Soc. 2016, 138, 14347−14353; d) W. Wagner,
M. Wehner, V. Stepanenko, S. Ogi, F. Würthner, Angew. Chem. Int. Ed.
2017, 56, 16008–16012; e) D. Sankar Pal, H. Kar, S. Ghosh, Chem.
Comm. 2018, 54, 928-931.
This article is protected by copyright. All rights reserved.