FULL PAPER
Linder, J. Sundermeyer, S. S. Karlov, G. S. Zaitseva, Eur. J. In-
org. Chem. 2012, 3712–3724; c) M. Huang, E. K. Lermontova,
K. V. Zaitsev, A. V. Churakov, Y. F. Oprunenko, J. A. K. How-
ard, S. S. Karlov, G. S. Zaitseva, J. Organomet. Chem. 2009,
694, 3828–3832; d) T. Heidemann, S. Mathur, Eur. J. Inorg.
Chem. 2014, 506–510.
A. E. Wetherby Jr., L. R. Göller, A. G. DiPasquale, A. L.
Rheingold, C. S. Weinert, Inorg. Chem. 2008, 47, 2162–2170.
a) A. E. Wetherby Jr., L. R. Göller, A. G. DiPasquale, A. L.
Rheingold, C. S. Weinert, Inorg. Chem. 2007, 46, 7579–7586;
b) T. Hascall, K. Pang, G. Parkin, Tetrahedron 2007, 63, 10826–
10833; c) T. Hascall, G. Parkin, A. L. Rheingold, I. Guzei,
Chem. Commun. 1998, 101–102; d) B. G. McBurnett, A. H.
Cowley, Chem. Commun. 1999, 17–18.
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Computational Details: The quantum chemical calculations of ener-
gies were carried out at the DFT-D (B3LYP-D3/def2-TZVPP) level
of theory using the TURBOMOLE program package.[29] All struc-
ture data given as xyz-files in the Supporting Material were ob-
tained by relaxing all degrees of freedom. The optimized structures
of the species (1)5 and (C)5 were estimated to be energetically favor-
able structures. All other structures were confirmed as minima by
normal mode analysis.
[8]
[9]
[10]
[11]
Y. Peng, J.-D. Guo, B. D. Ellis, Z. Zhu, J. C. Fettinger, S. Na-
gase, P. P. Power, J. Am. Chem. Soc. 2009, 131, 16272–16282.
a) K. A. Miller, T. W. Watson, J. E. Bender, M. M. B. Holl,
J. W. Kampf, J. Am. Chem. Soc. 2001, 123, 982–983; b) W. P.
Neumann, Chem. Rev. 1991, 91, 311–334; c) P. Jutzi, H.
Schmidt, B. Neumann, H. G. Stammler, Organometallics 1996,
15, 741–746.
H. Ohgaki, W. Ando, J. Organomet. Chem. 1996, 521, 387–389.
P. Riviere, J. Satgé, A. Boy, J. Organomet. Chem. 1975, 96, 25–
40.
Acknowledgments
We gratefully acknowledge financial support by the Deutsche For-
schungsgemeinschaft (DFG) (Forschergruppe 1497, Organic-Inor-
ganic Nanocomposites through Twin Polymerization) and the
Fonds der Chemischen Industrie for Ph. D. fellowships to P. K. and
M. K. We also thank Dr. H. Petzold for NMR spectroscopic mea-
surements at variable temperatures.
[12]
[13]
[14]
a) M. Huang, M. M. Kireenko, K. V. Zaitsev, Y. F. Oprunenko,
A. V. Churakov, J. A. K. Howard, M. V. Zabalov, E. K. Ler-
montova, J. Sundermeyer, T. Linder, S. S. Karlov, G. S. Zait-
seva, J. Organomet. Chem. 2012, 706, 66–83; b) A. E.
Wetherby Jr., C. R. Samanamu, A. C. Schrick, A. DiPasquale,
J. A. Golen, A. L. Rheingold, C. S. Weinert, Inorg. Chim. Acta
2010, 364, 89–95; c) E. Bonnefille, S. Mazieres, N. El Hawi, H.
Gornitzka, C. Couret, J. Organomet. Chem. 2006, 691, 5619–
5625; d) K. A. Miller, J. M. Bartolin, R. M. O’Neill, R. D.
Sweeder, T. M. Owens, J. W. Kampf, M. M. B. Holl, N. J. Wells,
J. Am. Chem. Soc. 2003, 125, 8986–8987.
J. L. Walding, P. E. Fanwick, C. S. Weinert, Inorg. Chim. Acta
2005, 358, 1186–1192.
J. K. West, L. Stahl, Organometallics 2012, 31, 2042–2052.
L. Lange, B. Meyer, W. W. Dumont, J. Organomet. Chem. 1987,
329, C17–C20.
a) L. Roß, M. Dräger, Z. Naturforsch. B 1984, 39, 868–875; b)
M. Nanjo, T. Sasage, K. Mochida, Chem. Lett. 2002, 1124–
1125; c) M. Nanjo, T. Sasage, K. Mochida, J. Organomet.
Chem. 2003, 667, 135–142; d) M. P. Brown, E. G. Rochow, J.
Am. Chem. Soc. 1960, 82, 4166–4168; e) K. Ogawa, K. Tanaka,
S. Yoshimura, Y. Takeuchi, J. Chien, Y. Kai, N. Kasai, Acta
Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, 47, 2558–
2561.
a) H. Puff, S. Franken, W. Schuh, W. Schwab, J. Organomet.
Chem. 1983, 254, 33–41; b) H. Puff, S. Franken, W. Schuh, W.
Schwab, J. Organomet. Chem. 1983, 244, C41–C42.
J. Beckmann, K. Jurkschat, M. Schürmann, Eur. J. Inorg.
Chem. 2000, 939–941.
[1] D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun.
1974, 895–896.
[2] a) H. Sakaba, Y. Arai, K. Suganuma, E. Kwon, Organometal-
lics 2013, 32, 5038–5046; b) I. A. Portnyagin, M. S. Nechaev, J.
Organomet. Chem. 2009, 694, 3149–3153; c) J. Hlina, J.
Baumgartner, C. Marschner, P. Zark, T. Müller, Organometal-
lics 2013, 32, 3300–3308; d) N. Zhao, J. Zhang, Y. Yang, G.
Chen, H. Zhu, H. W. Roesky, Organometallics 2013, 32, 762–
769; e) D. Matioszek, N. Saffon, J.-M. Sotiropoulos, K.
Miqueu, A. Castel, J. Escudie, Inorg. Chem. 2012, 51, 11716–
11721; f) L. W. Pineda, V. Jancik, J. F. Colunga-Valladares,
H. W. Roesky, A. Hofmeister, J. Magull, Organometallics 2006,
25, 2381–2383.
[3] a) L. Wang, S.-C. Rosca, V. Poirier, S. Sinbandhit, V. Dorcet,
T. Roisnel, J.-F. Carpentier, Y. Sarazin, Dalton Trans. 2014, 43,
4268–4286; b) D. Gallego, A. Brück, E. Irran, F. Meier, M.
Kaupp, M. Driess, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135,
15617–15626; c) K. Revunova, G. I. Nikonov, Dalton Trans.
2015, 44, 840–866.
[4] a) Z. D. Brown, P. P. Power, Inorg. Chem. 2013, 52, 6248–6259;
b) Z. D. Brown, P. Vasko, J. D. Erickson, J. C. Fettinger, H. M.
Tuononen, P. P. Power, J. Am. Chem. Soc. 2013, 135, 6257–
6261; c) J. W. Dube, Z. D. Brown, C. A. Caputo, P. P. Power,
P. J. Ragogna, Chem. Commun. 2014, 50, 1944–1946; d) Z. D.
Brown, J. D. Erickson, J. C. Fettinger, P. P. Power, Organome-
tallics 2013, 32, 617–622.
[5] a) A. V. Zabula, F. E. Hahn, Eur. J. Inorg. Chem. 2008, 5165–
5179; b) O. Kühl, Coord. Chem. Rev. 2004, 248, 411–427; c) S.
Karwasara, M. K. Sharma, R. Tripathi, S. Nagendran, Orga-
nometallics 2013, 32, 3830–3836; d) S. Krupski, R. Poettgen, I.
Schellenberg, F. E. Hahn, Dalton Trans. 2014, 43, 173–181.
[6] a) R. A. Green, C. Moore, A. L. Rheingold, C. S. Weinert, In-
org. Chem. 2009, 48, 7510–7512; b) C. S. Weinert, A. E. Fen-
wick, P. E. Fanwick, I. P. Rothwell, Dalton Trans. 2003, 532–
539; c) T. J. Boyle, L. J. Tribby, L. A. M. Ottley, S. M. Han, Eur.
J. Inorg. Chem. 2009, 5550–5560; d) B. Cetinkaya, I. Gum-
rukcu, M. F. Lappert, J. L. Atwood, R. D. Rogers, M. J. Za-
worotko, J. Am. Chem. Soc. 1980, 102, 2088–2089; e) M. F.
Lappert, R. S. Rowe, Coord. Chem. Rev. 1990, 100, 267–292; f)
A. J. Ruddy, P. A. Rupar, K. J. Bladek, C. J. Allan, J. C. Avery,
K. M. Baines, Organometallics 2010, 29, 1362–1367.
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
P. Klüfers, C. Vogler, Z. Anorg. Allg. Chem. 2007, 633, 908–
912.
M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G.
Truhlar, J. Phys. Chem. A 2009, 113, 5806–5812.
a) A. K. Swarnakar, S. M. McDonald, K. C. Deutsch, P. Choi,
M. J. Ferguson, R. McDonald, E. Rivard, Inorg. Chem. 2014,
53, 8662–8671; b) B. Lyhs, D. Bläser, C. Wölper, S. Schulz, R.
Haack, G. Jansen, Inorg. Chem. 2013, 52, 7236–7241; c) A.
Jana, V. Huch, D. Scheschkewitz, Angew. Chem. Int. Ed. 2013,
52, 12179–12182.
V. Krishnan, S. Gross, S. Müller, L. Armelao, E. Tondello, H.
Bertagnolli, J. Phys. Chem. B 2007, 111, 7519–7528.
C.-L. Lin, M.-D. Su, S.-Y. Chu, Chem. Phys. 1999, 249, 145–
160.
[24]
[25]
[26]
[7] a) M. Huang, M. M. Kireenko, P. B. Djevakov, K. V. Zaitsev,
Y. F. Oprunenko, A. V. Churakov, D. A. Tyurin, S. S. Karlov,
G. S. Zaitseva, J. Organomet. Chem. 2013, 735, 15–25; b) M.
Huang, M. M. Kireenko, K. V. Zaitsev, Y. F. Oprunenko, A. V.
Churakov, J. A. K. Howard, E. K. Lermontova, D. Sorokin, T.
P. Kitschke, A. A. Auer, T. Löschner, A. Seifert, S. Spange, T.
Rüffer, H. Lang, M. Mehring, ChemPlusChem 2014, 79, 1009–
1023.
Eur. J. Inorg. Chem. 2015, 5467–5479
5478
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim