Page 7 of 9
The Journal of Organic Chemistry
15
Pradhan, T.; Jung, H. S.; Jang, J. H.; Kim, T. W.; Kang C.;
ASSOCIATED CONTENT
Kim, J. S. Chemical sensing of neurotransmitters. Chem. Soc. Rev.
2014, 43, 4684–4713.
16
1
2
Supporting information
Inouye, M.; Hashimoto K.; Isagawa, K. Nondestructive
3
4
5
6
7
8
9
Detection of Acetylcholine in Protic Media: Artificial-Signaling
Acetylcholine Receptors. J. Am. Chem. Soc. 1994, 116, 5517–5518.
17 a) Tan, S.-D.; Chen, W.-H.; Satake, A.; Wang, B.; Xu Z.-L.;
Kobuke, Y. Tetracyanoresorcin[4]arene as a pH dependent artificial
acetylcholine receptor. Org. Biomol. Chem., 2004, 2, 2719–2721. b)
The Supporting Information is available free of charge on
the ACS Publications website.
1H and 13C NMR, mass and UV spectra, titration
experiments and cartesian coordiantes (PDF).
Koh, K. N.; Araki, K.;
Ikeda, A.; Otsuka H.; Shinkai, S.
Calixarene-Based Artificial-Signaling
Useful in Neutral Aqueous
Reinvestigation
Acetylcholine
of
AUTHOR INFORMATION
Receptors
Corresponding Author
(Water/Methanol) Solution. J. Am. Chem. Soc. 1996, 118, 755–758.
18 Liu, Y.; Perez, L.; Mettry, M.; Gill, A. D.; Byers, S. R.;
Easley, C. J.; Bardeen, C. J.; Zhong, W.; Hooley, R. J. Site selective
reading of epigenetic markers by a dual-mode synthetic receptor
array. Chem. Sci. 2017, 8, 3960-3970.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
* E-mail: alexandre.martinez@centrale-marseille.fr
Notes
19
Korbakov, N.; Timmerman, P.; Lidich, N.; Urbach, B.;
The authors declare no competing financial interest.
Sa’ar, A.; Yitzchaik, S. Acetylcholine Detection at Micromolar
Concentrations with the Use of an Artificial Receptor-Based
Fluorescence Switch. Langmuir 2008, 24, 2580–2587.
REFERENCES
20
a) Dumartin, M.-L.; Givelet, C.; Meyrand, P.; Bibal B.;
fluorescent cyclotriveratrylene: synthesis, emission
(1)
Descarries, L.; Umbriaco, D. Ultrastructural basis of
Gosse, I.
A
monoamine and acetylcholine function in CNS. Semin. Neurosci.
1995, 7, 309–318.
properties and acetylcholine recognition in water. Org. Biomol. Chem.
2009, 7, 2725–2728. b) Erieau-Peyrard, L.; Coiffier, C.; Bordat, P.;
Bégué, D.; Chierici, S.; Pinet, S.; Gosse, I.; Barailleb I.; Brown, R.
Selective, direct detection of acetylcholine in PBS solution, with self-
assembled fluorescent nano-particles: experiment and modelling.
Phys. Chem. Chem. Phys. 2015, 17, 4168-4174.
21 Schneider, H.-J.; Güttes D.; Schneider, U. A Macrobicyclic
Polyphenoxide as Receptor Analogue for Choline and Related
Ammonium Compounds. Angew. Chem. Int. Ed. Engl. 1986, 25, 647–
649.
22 Jia, C.; Zuo, W.; Yang, D.; Chen, Y.; Cao, L.; Custelcean, R.;
Hostaš, J.; Hobza, P.; Glaser, R.; Wang, Y.-Y.; Yang X.-J.; Wu B.
Selective binding of choline by a phosphate-coordination-based triple
helicate featuring an aromatic box. Nat. Commun. 2017, 8, 938.
23 Hooley, R. J.; Van Anda H.; Rebek, J. Extraction of
Hydrophobic Species into a Water-Soluble Synthetic Receptor. J. Am.
Chem. Soc. 2007, 129, 13464–13473.
2
Tsai, T.-H. Separation methods used in the determination
of choline and acetylcholine. J. Chromatogr. B. Biomed. Sci. Appl.
2000, 747, 111–122.
3
Kandel, E. R.; Schwartz J. H.; Jessell, T. M. Principles of
Neural Science, MacGraw Hill, United States, 4th edn., 2000.
Cooper, J. R.; Bloom F. E.; Roth, R. H. The biochemical
4
basis of neuropharmacology, Oxford University Press, New York,
1991.
5
Dhaenens, M.; Lacombe, L.; Lehn J.-M.; Vigneron, J.-P.
Binding of acetylcholine and other molecular cations by
macrocyclic receptor molecule of speleand type. J. Chem. Soc. Chem.
Commun. 1984, 1097–1099.
a
6
Dougherty D. A.; Stauffer, D. A. Acetylcholine binding by
a synthetic receptor: implications for biological recognition. Science,
1990, 250, 1558–1560.
7
Lehn, J.-M.; Meric, R.; Vigneron, J.-P.; Cesario, M.;
Guilhem, J. Pascard, C.; Asfari Z.; Vicens, J. Binding of
acetylcholine and other quaternary ammonium cations by sulfonated
calixarenes. Crystal structure of [choline-tetrasulfonated
calix[4]arene] complex. Supramol. Chem. 1995, 5, 97–103.
Bartoli, S.; Roelens, S. Binding of Acetylcholine and
Tetramethylammonium to Cyclophane Receptor:ꢀ Anion's
24
a) Ballester, P.; Shivanyuk, A.; Far A. R.; Rebek, J. A
;
Synthetic Receptor for Choline and Carnitine J. Am. Chem. Soc. 2002,
124, 14014–14016. b) Ballester P.; Sarmentero, M. A. Hybrid
Cavitand−Resorcin[4]arene Receptor for the Selective Binding of
Choline and Related Compounds in Protic Media. Org. Lett. 2006, 8,
3477-3480.
25 Guo, D.-S.; Uzunova, V. D.; Su, X.; Liu Y.; Nau, W. M.
Operational calixarene-based fluorescent sensing systems for choline
and acetylcholine and their application to enzymatic reactions. Chem.
Sci. 2011, 2, 1722–1734.
a
8
a
Contribution to the Cation− π Interaction. J. Am. Chem. Soc. 2002,
124, 8307–8315.
9
Zelder, F. H.; Rebek, J. R. Jr Cavitand templated catalysis
of acetylcholine. Chem. Commun. 2006, 753–754.
10 Park, Y. S.; Kim, Y.; Paek, K. Park, Y. S.; Kim, Y.; Paek, K.
Org. Lett. 2019, 21, 8300−8303.
11 Abdoul-Carime, H.; Harb, M. M.; Montano, C. G.; Teyssier, C.;
Farizon, B.; Farizon, M.; Vachon, J.; Harthong, S.; Dutasta, J.-P.;
Jeanneau E.; Märk, T. D. Selective host–guest chemistry investigated
by mass spectrometry: Which of the two, choline or acetylcholine, is
the preferred one by the 3iPO triphosphonate-cavitand ? Chem. Phys.
Lett. 2012, 533, 82–86;
26
a) Hof, F.; Trembleau, L.; Ullrich E. C.; Rebek J.
Acetylcholine Recognition by a Deep, Biomimetic Pocket. Angew.
Chem. Int. Ed. 2003, 42, 3150–3153. b) Whiting A. L.; Hof, F.
Binding trimethyllysine and other cationic guests in water with a
series of indole-derived hosts: large differences in affinity from subtle
changes in structure. Org. Biomol. Chem. 2012, 10, 6885–6892.
27
Garel, L.; Lozach, B.; Dutasta, J.-P.; Collet, A. Remarkable
effect of the receptor size in the binding of acetylcholine and related
ammonium ions to water-soluble cryptophanes. J. Am. Chem. Soc.
1993, 115, 11652–11653.
28 Peyrard, L.; Chierici, S.; Pinet, S.; Batat, P.; Jonusauskas, G.;
Pinaud, N.; Meyrand P.; Gosse, I. C3-triiodocyclotriveratrylene as a
key intermediate to fluorescent probes: application to selective
choline recognition. Org. Biomol. Chem. 2011, 9, 8489-8494.
12
Jin, T. Near-Infrared Fluorescence Detection of
Acetylcholine in Aqueous Solution Using a Complex of Rhodamine
800 and p-Sulfonato-calix[8]arene. Sensors 2010, 10, 2438–2449.
13
Ma, J.; Meng, Q.; Hu, X.; Li, B.; Ma, S.; Hu, B.; Li, J.; Jia
X.; Li, C. Synthesis of a Water-Soluble Carboxylatobiphen[4]arene
and Its Selective Complexation toward Acetylcholine. Org. Lett.
2016, 18, 5740–5743.
29
Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Mulatier, J.-
C.; Dutasta J.-P.; Chermette, H. Solution vs. gas phase relative
stability of the choline/acetylcholine cavitand complexes. Phys.
Chem. Chem. Phys. 2015, 17, 4448–4457.
14
de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
Huxley, A. J. M.; McCoy, C. P.; Rademacher J. T; Rice, T. E.
Signaling Recognition Events with Fluorescent Sensors and Switches.
Chem. Rev. 1997, 97, 1515–1566.
30
Bakirci H.; Nau, W. Fluorescence Regeneration as a
Signaling Principle for Choline and Carnitine Binding: A Refined
ACS Paragon Plus Environment