iCB[6] to CB[6] Mechanism
recognition,10 DNA delivery and cleavage, mediation of
11
CHART 1. Chemical Structures of CB[n] and iCB[n]
1
2
13
organic reactions, chemical sensors, and self-sorting sys-
1
4
tems. Despite the fact that the recognition properties of
CB[n] molecular containers surpass those of the cyclodextrins,
their use in industrial applications has been limited by several
factors. These include the following: (1) cyclodextrinssbut not
CB[n]scan be accessed in a size-selective manner by the
inclusion of appropriate complexation agents in the cyclodextrin
forming reaction mixture, (2) R-, â-, and γ-cyclodextrin have
very good aqueous solubility whereas CB[n] (n ) 6, 8, 10)
compounds have low solubility in unbuffered water, and (3)
strategies for the chemical derivatization of the cyclodextrins
are better developed. We, and others, have been pursuing a
synthetic and mechanistic approach toward the tailor-made
synthesis of CB[n], CB[n] derivatives, and CB[n] analogues as
science applications.20 In this manner, significant progress has
been made toward alleviating the limitations of the second and
third factors. In this paper, we continue to tackle the first
limitation by enhancing our knowledge of the mechanism of
formation of the CB[n] family of macrocycles. Specifically, we
show that iCB[6] and iCB[7] are kinetically controlled inter-
mediates in the formation of CB[n] and investigate the mech-
anism of the conversion of iCB[6] to CB[6] under acidic
conditions.
part of our efforts to remove these impediments toward their
industrial application.1
5-18
For example, Kim’s group has
developed the direct functionalization of preformed CB[n] that
yields (HO)2nCB[n] compounds that undergo further covalent
derivatization reactions.19 These CB[n] derivatives have en-
hanced water and organic solubility, enable attachment to solid
phases for separations and immobilization applications, and
serve as multivalent building blocks in biology and materials
Results and Discussion
This section begins with a brief presentation of the state-of-
the-art regarding the mechanism of CB[n] formation, which
serves as a basis for the subsequent discussion of the mechanism
of conversion of iCB[6] to CB[6].
Previous Mechanistic Studies. Scheme 1 shows the funda-
mental steps of the mechanism of CB[n] formation that were
presented by the groups of Isaacs and Day previously and
modified here to include the presence of iCB[n] as kinetically
(
8) Lee, J. W.; Ko, Y. H.; Park, S.-H.; Yamaguchi, K.; Kim, K. Angew.
Chem., Int. Ed. 2001, 40, 746-749. Wang, W.; Kaifer, A. E. Angew. Chem.,
Int. Ed. 2006, 45, 7042-7046. Sobransingh, D.; Kaifer, A. E. Langmuir
2
006, 22, 10540-10544. Kim, S.-Y.; Ko, Y. H.; Lee, J. W.; Sakamoto, S.;
Yamaguchi, K.; Kim, K. Chem. Asian J. 2007, 2, 747-754.
3
,21
(9) Wheate, N. J.; Day, A. I.; Blanch, R. J.; Arnold, A. P.; Cullinane,
controlled intermediates in the process. In brief, glycoluril 1
undergoes dimerization in the presence of a source of formal-
dehyde under acidic conditions to yield a mixture of two
diastereomers (2C and 2S). These dimers are hypothesized to
undergo further oligomerization to yield Behrend’s polymer (3),
which has a large number of possible diastereomers dependent
on the relative orientation of the H-atoms on the convex face
of the glycoluril oligomer. Behrend’s polymer 3 then intercon-
verts most or all of its S-shaped to C-shaped subunitssperhaps
C.; Collins, J. G. Chem. Commun. 2004, 1424-1425. Bali, M. S.; Buck,
D. P.; Coe, A. J.; Day, A. I.; Collins, J. G. Dalton Trans. 2006, 5337-
5
2
344. Wheate, N. J.; Buck, D. P.; Day, A. I.; Collins, J. G. Dalton Trans.
006, 451-458; Jeon, Y. J.; Kim, S.-Y.; Ko, Y. H.; Sakamoto, S.;
Yamaguchi, K.; Kim, K. Org. Biomol. Chem. 2005, 3, 2122-2125.
(10) Bush, M. E.; Bouley, N. D.; Urbach, A. R. J. Am. Chem. Soc. 2005,
1
27, 14511-14517. Heitmann, L. M.; Taylor, A. B.; Hart, P. J.; Urbach,
A. R. J. Am. Chem. Soc. 2006, 128, 12574-12581. Rekharsky, M. V.;
Yamamura, H.; Ko, Y. H.; Kim, K.; Inoue, Y. Peptide Sci. 2006, 43, 393-
3
94.
(11) Lim, Y.-B.; Kim, T.; Lee, J. W.; Kim, S.-M.; Kim, H.-J.; Kim, K.;
22
under the influence of templating groups sto create an
Park, J.-S. Bioconj. Chem. 2002, 13, 1181-1185. Isobe, H.; Sato, S.; Lee,
oligomer (e.g., 4 or 5) that is poised to undergo macrocyclization
to enter the CB[n] family manifold.
J. W.; Kim, H.-J.; Kim, K.; Nakamura, E. Chem. Commun. 2005, 1549-
1
9
551. Huo, F.-J.; Yin, C.-X.; Yang, P. Bioorg. Med. Chem. Lett. 2007, 17,
32-936.
The majority of the previously reported mechanistic studies
of CB[n] formation have been reported by the groups of Day
(12) Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Adhya, M. J. Org. Chem.
1
989, 54, 5302-5308. Jon, S. Y.; Ko, Y. H.; Park, S. H.; Kim, H.-J.; Kim,
3
,18,21,22
K. Chem. Commun. 2001, 1938-1939. Choi, S.; Park, S. H.; Ziganshina,
A. Y.; Ko, Y. H.; Lee, J. W.; Kim, K. Chem. Commun. 2003, 2176-2177.
Pattabiraman, M.; Natarajan, A.; Kaliappan, R.; Mague, J. T.; Ramamurthy,
V. Chem. Commun. 2005, 4542-4544. Wang, R.; Yuan, L.; Macartney,
D. H. J. Org. Chem. 2006, 71, 1237-1239.
and Isaacs.
For example, the Day group focused on the
latter stages of the mechanism of CB[n] formation compounds
by examining the influence of a variety of potential templates
(e.g., ammonium ions and alkali metal cations) on the distribu-
tion of CB[n] compounds obtained. Day’s group also reported
the influence of acid type, acid concentration, and concentration
of glycoluril on the outcome of the CB[n]-forming reaction.
Although these variables do influence the outcome of the
CB[n]-forming reaction, the impact of these variables on the
(13) Sindelar, V.; Cejas, M. A.; Raymo, F. M.; Chen, W.; Parker, S. E.;
Kaifer, A. E. Chem. Eur. J. 2005, 11, 7054-7059. Lagona, J.; Wagner, B.
D.; Isaacs, L. J. Org. Chem. 2006, 71, 1181-1190. Ling, Y.; Wang, W.;
Kaifer, A. E. Chem. Commun. 2007, 610-612.
(14) Mukhopadhyay, P.; Wu, A.; Isaacs, L. J. Org. Chem. 2004, 69,
6
157-6164. Liu, S.; Ruspic, C.; Mukhopadhyay, P.; Chakrabarti, S.; Zavalij,
P. Y.; Isaacs, L. J. Am. Chem. Soc. 2005, 127, 15959-15967. Mukho-
padhyay, P.; Zavalij, P. Y.; Isaacs, L. J. Am. Chem. Soc. 2006, 128, 14093-
1
4102.
(20) Lee, H.-K.; Park, K. M.; Jeon, Y. J.; Kim, D.; Oh, D. H.; Kim, H.
S.; Park, C. K.; Kim, K. J. Am. Chem. Soc. 2005, 127, 5006-5007.
Nagarajan, E. R.; Oh, D. H.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim,
K. Tetrahedron Lett. 2006, 47, 2073-2075. Hwang, I.; Baek, K.; Jung,
M.; Kim, Y.; Park, K. M.; Lee, D.-W.; Selvapalam, N.; Kim, K. J. Am.
Chem. Soc. 2007, 129, 4170-4171. Kim, D.; Kim, E.; Kim, J.; Park, K.
M.; Baek, K.; Jung, M.; Ko, Y. H.; Sung, W.; Kim, H. S.; Park, C. G.; Na,
O. S.; Lee, D.-K.; Lee, K. E.; Han, H. S.; Kim, K. Angew. Chem., Int. Ed.
2007, 46, 3471-3474.
(21) Chakraborty, A.; Wu, A.; Witt, D.; Lagona, J.; Fettinger, J. C.;
Isaacs, L. J. Am. Chem. Soc. 2002, 124, 8297-8306.
(22) Day, A. I.; Blanch, R. J.; Coe, A.; Arnold, A. P. J. Inclusion Phenom.
Macrocycl. Chem. 2002, 43, 247-250.
(15) Day, A. I.; Arnold, A. P.; Blanch, R. J. Molecules 2003, 8, 74-84.
Zhao, Y.; Xue, S.; Zhu, Q.; Tao, Z.; Zhang, J.; Wei, Z.; Long, L.; Hu, M.;
Xiao, H.; Day, A. I. Chin. Sci. Bull. 2004, 49, 1111-1116.
(
16) Lagona, J.; Fettinger, J. C.; Isaacs, L. Org. Lett. 2003, 5, 3745-
3
747.
17) Jon, S. Y.; Selvapalam, N.; Oh, D. H.; Kang, J.-K.; Kim, S.-Y.;
(
Jeon, Y. J.; Lee, J. W.; Kim, K. J. Am. Chem. Soc. 2003, 125, 10186-
1
0187.
(18) Lagona, J.; Fettinger, J. C.; Isaacs, L. J. Org. Chem. 2005, 70,
1
0381-10392.
(19) Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim,
J. Chem. Soc. ReV. 2007, 36, 267-279.
J. Org. Chem, Vol. 72, No. 18, 2007 6841