10.1002/anie.201903165
Angewandte Chemie International Edition
COMMUNICATION
W. McDouall, I. Maffucci, A. Contini, D. M. Grainger, N. J.
Turner, J. Clayden, Angew. Chem.Int. Edit. 2016, 55, 10755-
10759.
8.04 Å and 8.09 Å for (R)-isomer), according to the analysis
of the 10 ns trajectory of the MD simulation (Figure S8).
Based on these results, we proposed that the excited FAD
should easily undergo facile single electron transfer (SET)
with carboxylate of the (S)-isomer after irradiation by light,
while the (R)-isomer probably remains unchanged.
[5] a) M. L. E. Gutarra, O. Romero, O. Abian, F. A. G. Torres, D.
M. G. Freire, A. M. Castro, J. M. Guisan, J. M. Palomo,
Chemcatchem 2011, 3, 1902-1910; b) J. M. Palomo, G.
Fernandez-Lorente, J. M. Guisan, R. Fernandez-Lafuente,
Adv. Synth. Catal. 2007, 349, 1119-1127; c) J. J. Lalonde, C.
Govardhan, N. Khalaf, A. G. Martinez, K. Visuri, A. L.
Margolin, J. Am. Chem. Soc. 1995, 117, 6845-6852; d) D.
Kato, S. Mitsuda, H. Ohta, J. Org. Chem. 2003, 68, 7234-
7242; e) Y. K. Choi, Y. Kim, K. Han, J. Park, M. J. Kim, J. Org.
Chem. 2009, 74, 9543-9545.
In summary, our study demonstrates a new strategy of direct
photoinduced KR of α-functionalized carboxylic acids by
engineered CvFAP without dependence on electron-transfer
by NADPH or prerequisite preparation of esters, which are
required in previous biocatalytic approaches. Under the
guidance of rational design, the mutation strategy was
performed by introducing large-sized amino acids via site-
specific mutagenesis to improve the hydrophobic interaction
between substrates and the binding tunnel. Rather than using
saturation mutagenesis involving large amino acid alphabets,
the present strategy drastically reduces the screening effort.
MD simulation was implemented to gain insight into the origin
of the selectivity of the best mutant. We believe that this
photoinduced enantioselective biocatalytic process provides a
greener and more sustainable approach to obtain chiral α-
functionalized carboxylic acids, which are useful as building
blocks in the synthesis of important pharmaceuticals.
[6] a) K.E. Jaeger, M.T. Reetz, Trends Biotechnol. 1998, 16,
396-403; b) U.T. Bornscheuer, R.J. Kazlauskas, Hydrolases
in
organic
synthesis:
regio-
and
stereoselective
biotransformations, Wiley-VCH Weinheim, Germany, 1999; c)
O. Pamies, J.E. Backvall, Chem. Rev. 2003, 103, 3247-3261;
d) R. Kourist, U.T. Bornscheuer, Appl. Microbiol. Biotechnol.
2011, 91, 505-517
[7] a) W. Zhang, E. Fernandez-Fueyo, Y. Ni, M. van Schie, J.
Gacs, R. Renirie, R. Wever, F. G. Mutti, D. Rother, M.
Alcalde, F. Hollmann, Nat. Catal. 2018, 1, 55-62; b) W. Zhang,
B. O. Burek, E. Fernandez-Fueyo, M. Alcalde, J. Z. Bloh, F.
Hollmann, Angew. Chem. Int. Edit. 2017, 56, 15451-15455; c)
X. Guo, Y. Okamoto, M. R. Schreier, T. R. Ward, O. S.
Wenger, Chem. Sci. 2018, 9, 5052-5056; d) F. Hollmann, A.
Taglieber, F. Schulz, M. T. Reetz, Angew. Chem. Int. Edit.
2007, 46, 2903-2906; e) K. Lauder, A. Toscani, Y. Qi, J. Lim,
S. J. Charnock, K. Korah, D. Castagnolo, Angew. Chem. Int.
Edit. 2018, 57, 5803-5807; f) Z. C. Litman, Y. Wang, H. Zhao,
J. F. Hartwig, Nature 2018, 560, 355-359; g) M. Mifsud, S.
Gargiulo, S. Iborra, I. W. C. E. Arends, F. Hollmann, A.
Corma, Nat. Commun. 2014, 5. 3145. h) L. Zachos, S. K.
Gassmeyer, D. Bauer, V. Sieber, F. Hollmann, R. Kourist,
Acknowledgements
The financial support from National Natural Science
Foundation of China (21574113) and Zhejiang Provincial
Natural Science Foundation (LY19B020014) is gratefully
acknowledged.
Chem. Commun. 2015, 51, 1918-1921.
[8] a) K. Brettel, M. Byrdin, Curr. Opin. Struct. Biol. 2010, 20,
693-701; b) A. Sancar, Angew. Chem. Int. Edit. 2016, 55,
8502-8527.
[9] a) A. Garrone, N. Archipowa, P. F. Zipfel, G. Hermann, B.
Dietzek, J. Biol. Chem. 2015, 290, 28530-28539; b) M.-Y. Ho,
G. Shen, D. P. Canniffe, C. Zhao, D. A. Bryant, Science 2016,
353.
Keywords: photoenzyme • biocatalysis • α-functionalized
carboxylic acids • kinetic resolution • rational design
[10]D. Sorigue, B. Legeret, S. Cuine, S. Blangy, S. Moulin, E.
Billon, P. Richaud, S. Brugiere, Y. Coute, D. Nurizzo, P.
Mueller, K. Brettel, D. Pignol, P. Arnoux, Y. Li-Beisson, G.
Peltier, F. Beisson, Science 2017, 357, 903-907.
[11]a) M. M. E. Huijbers, W. Y. Zhang, F. Tonin, F. Hollmann,
Angew. Chem. Int. Edit. 2018, 57, 13648-13651; b) W. Zhang,
M. Ma, M.M.E. Huijbers, G.A. Filonenko, E.A. Pidko, M. van
Schie, S. de Boer, B.O. Burek, J.Z. Bloh, W.J.H. van Berkel,
W.A. Smith, F. Hollmann. J Am Chem Soc. 2019, 141, 3116-
3120.
[12]Selected reviews of directed evolution: a) N.J. Turner, Nat.
Chem. Biol. 2009, 5, 567–573; b) M.T. Reetz, Angew. Chem.
Int. Ed. 2011, 50, 138-174; c) A. Currin, N. Swainston, P.J.
Day, D.B. Kell, Chem. Soc. Rev. 2015, 44, 1172–1239; d)
C.A. Denard, H. Ren, H. Zhao, Curr. Opin. Chem. Biol. 2015,
25, 55–64; e) F.H. Arnold, Angew. Chem. Int. Edit. 2018, 57,
4143-4148; f) C. Zeymer, D. Hilvert, Annu. Rev. Biochem.
2018, 87, 131-157; g) U.T. Bornscheuer, B. Hauer, K.E.
Jaeger, U. Schwaneberg, Angew. Chem. Int. Edit. 2019, 58,
36-40; h) Z. Sun, Q. Liu, G. Qu, Y. Feng, M.T. Reetz, Chem.
Rev. 2019, 119, 1626-1665.
[13]a) M. Pickl, A. Swoboda, E. Romero, C. K. Winkler, C. Binda,
A. Mattevi, K. Faber, M.W. Fraaije, Angew. Chem. Int. Edit.
2018, 57, 2864-2868; b) G. Li, H. Zhang, Z. Sun, X. Liu, M.T.
Reetz, ACS Catal. 2016, 6, 3679-3687; c) S. Junker, R.
Roldan, H.-J. Joosten, P. Clapes, W.-D. Fessner, Angew.
Chem. Int. Edit. 2018, 57, 10153-10157.
[1] a) J. J. Acton, III, T. E. Akiyama, C. H. Chang, L. Colwell, S.
Debenham, T. Doebber, M. Einstein, K. Liu, M. E. McCann, D.
E. Moller, E. S. Muise, Y. Tan, J. R. Thompson, K. K. Wong,
M. Wu, L. Xu, P. T. Meinke, J. P. Berger, H. B. Wood, J. Med.
Chem. 2009, 52, 3846-3854; b) Y. Yamazaki, K. Abe, T.
Torna, M. Nishikawa, H. Ozawa, A. Okuda, T. Araki, S. Odaa,
K. Inoue, K. Shibuya, B. Staels, J.-C. Fruchart, Bioorg. Med.
Chem. Lett. 2007, 17, 4689-4693; c) D. Wang, C. Wang, P.
Gui, H. Liu, S. M. H. Khalaf, E. A. Elsayed, M. A. M. Wadaan,
W. N. Hozzein, W. Zhu, Front. Microbiol. 2017, 8.
[2] a) P.-C. Yan, J.-H. Xie, X.-D. Zhang, K. Chen, Y.-Q. Li, Q.-L.
Zhou, D.-Q. Che, Chem. Commun. 2014, 50, 15987-15990; b)
F. Taran, C. Gauchet, B. Mohar, S. Meunier, A. Valleix, P. Y.
Renard, C. Creminon, J. Grassi, A. Wagner, C. Mioskowski,
Angew. Chem. Int. Edit. 2002, 41, 124-127.
[3] a) A. Bodlenner, S. M. Glueck, B. M. Nestl, C. C. Gruber, N.
Baudendistel, B. Hauer, W. Kroutil, K. Faber, Tetrahedron
2009, 65, 7752-7755; b) L.J. Wang, C.X. Li, Y. Ni, J. Zhang,
X. Liu, J.H. Xu, Bioresour Technol. 2011, 102, 7023-7028; c)
H. Li, P. Tian, J.H. Xu, G.W. Zheng, Org. Lett. 2017, 19,
3151-3154; d) J. Mangas-Sanchez, S.P. France, S.L.
Montgomery, et al., G.A. Aleku, H. Man, M. Sharma, J.I.
Ramsden, G. Grogan, N.J. Turner, Curr Opin Chem Biol.
2017, 37, 19-25; e) M.D. Patil, G. Grogan, A. Bommarius, H.
Yun, ACS Catal. 2018, 8, 10985-11015; f) J. F. Hyslop, S. L.
Lovelock, P. W. Sutton, K. K. Brown, A. J. B. Watson, G.-D.
Roiban, Angew. Chem. Int. Edit. 2018, 57, 13821-13824.
[4] a) P. Matzel, M. Gand, M. Hoehne, Green Chem. 2017, 19,
385-389; b) G. A. Aleku, S. P. France, H. Man, J. Mangas-
Sanchez, S. L. Montgomery, M. Sharma, F. Leipold, S.
Hussain, G. Grogan, N. J. Turner, Nat. Chem. 2017, 9, 961-
969; c) L. Huang, G. V. Sayoga, F. Hollmann, S. Kara, ACS
Catal. 2018, 8, 8680-8684; d) S. Staniland, R. W. Adams, J. J.
[14]J.J. Mills, K. R. Robinson, T. E. Zehnder, J. G. Pierce, Angew.
Chem. Int. Edit. 2018, 57, 8682-8686.
[15]K. Abrahamsson, P. Andersson, J. Bergman, U. Bredberg, J.
Branalt, A. C. Egnell, et al., MedChemComm 2016, 7, 272-
281.
This article is protected by copyright. All rights reserved.