Welcome to LookChem.com Sign In|Join Free

CAS

  • or

26062-47-5

Post Buying Request

26062-47-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

26062-47-5 Usage

General Description

Poly-L-methionine is a synthetic polymer derived from the amino acid methionine, which is an essential amino acid in the human body. It is often used as a low-cost alternative to natural methionine in animal feed and as a food additive to enhance the nutritional value of various products. Poly-L-methionine is believed to have antioxidant properties and has been studied for its potential in combating oxidative stress and inflammation in the body. It is generally considered safe for consumption and has been approved for use in food and feed applications by various regulatory authorities. Additionally, it has been explored for its potential in medical applications, including drug delivery and tissue engineering.

Check Digit Verification of cas no

The CAS Registry Mumber 26062-47-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,6,0,6 and 2 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 26062-47:
(7*2)+(6*6)+(5*0)+(4*6)+(3*2)+(2*4)+(1*7)=95
95 % 10 = 5
So 26062-47-5 is a valid CAS Registry Number.

26062-47-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-amino-4-methylsulfanylbutanoic acid

1.2 Other means of identification

Product number -
Other names POLY-L-METHIONINE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:26062-47-5 SDS

26062-47-5Relevant articles and documents

On the biogenesis of methionine.

WILMANNS,RUECKER,JAENICKE

, p. 283 - 287 (1960)

-

-

Mathes,Beber

, p. 1451 (1948)

-

-

Goldsmith,Tishler

, p. 144 (1946)

-

On the coordination isomerism (a-b isomerism) of Co-alkyl corrinoids. Partial synthesis and some properties of Co-methyl-cobalamin a

Friedrich,Nordmeyer

, p. 588 - 596 (1969)

-

Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp.

Arias, Diego G.,Cabeza, Matías S.,Erben, Esteban D.,Carranza, Pedro G.,Lujan, Hugo D.,I?ón, María T. Téllez,Iglesias, Alberto A.,Guerrero, Sergio A.

, p. 37 - 46 (2011)

Methionine is an amino acid susceptible to being oxidized to methionine sulfoxide (MetSO). The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase (MSR), an enzyme present in almost all organisms. In trypanosomatids, the study of antioxidant systems has been mainly focused on the involvement of trypanothione, a specific redox component in these organisms. However, no information is available concerning their mechanisms for repairing oxidized proteins, which would be relevant for the survival of these pathogens in the various stages of their life cycle. We report the molecular cloning of three genes encoding a putative A-type MSR in trypanosomatids. The genes were expressed in Escherichia coli, and the corresponding recombinant proteins were purified and functionally characterized. The enzymes were specific for L-Met(S)SO reduction, using Trypanosoma cruzi tryparedoxin I as the reducing substrate. Each enzyme migrated in electrophoresis with a particular profile reflecting the differences they exhibit in superficial charge. The in vivo presence of the enzymes was evidenced by immunological detection in replicative stages of T. cruzi and Trypanosoma brucei. The results support the occurrence of a metabolic pathway in Trypanosoma spp. involved in the critical function of repairing oxidized macromolecules.

Light-Driven Kinetic Resolution of α-Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase

Xu, Jian,Hu, Yujing,Fan, Jiajie,Arkin, Mamatjan,Li, Danyang,Peng, Yongzhen,Xu, Weihua,Lin, Xianfu,Wu, Qi

, p. 8474 - 8478 (2019)

Chiral α-functionalized carboxylic acids are valuable precursors for a variety of medicines and natural products. Herein, we described an engineered fatty acid photodecarboxylase (CvFAP)-catalyzed kinetic resolution of α-amino acids and α-hydroxy acids, which provides the unreacted R-configured substrates with high yields and excellent stereoselectivity (ee up to 99 %). This efficient light-driven process requires neither NADPH recycling nor prior preparation of esters, which were required in previous biocatalytic approaches. The structure-guided engineering strategy is based on the scanning of large amino acids at hotspots to narrow the substrate binding tunnel. To the best of our knowledge, this is the first example of asymmetric catalysis by an engineered CvFAP.

Increasing the storage and oxidation stabilities of N-acyl-d-amino acid amidohydrolase by site-directed mutagenesis of critical methionine residues

Peng, I-Chen,Lo, Kai-Yin,Hsu, Chun-Hua,Lee, Chia-Yin

, p. 1785 - 1790 (2012)

The recombinant N-acyl-d-amino acid amidohydrolase (N-d-AAase) of Variovorax paradoxus Iso1 was unstable during protein purification and storage at 4 °C. Since the methionine oxidation might be the artificial factor leading to the inactivation of N-d-AAase, eight potential oxidation sensitive methionine residues of the enzyme were individually substituted with leucine utilizing site-directed mutagenesis. Among them, five mutants, M39L, M56L, M221L, M254L, and M352L remained at least 70% of wild-type specific activity. The enzyme kinetic parameters of M221L revealed a 44% decrease in Km, and finally reflected a 2.4-fold increase in kcat/Km. Moreover, its half-life at 4 °C increased up to 6-fold longer than that of the wild-type. Structural analysis of each methionine substitution was carried out based on the crystal structure of N-d-AAase from Alcaligenes faecalis DA1. Met221 spatial closeness to the zinc-assistant catalytic center is highly potential as the primary site for oxidative inactivation. We conclude that the replacement of methionine M221 with leucine in N-d-AAase successfully enhances the oxidative resistance, half-life, and enzyme activity. This finding provides a promising basis for the engineering the stability and activity of N-d-AAase.

Analyses of methionine sulfoxide reductase activities towards free and peptidyl methionine sulfoxides

Kwak, Geun-Hee,Kim, Hwa-Young,Hwang, Kwang Yeon

, p. 1 - 5,5 (2012)

There have been insufficient kinetic data that enable a direct comparison between free and peptide methionine sulfoxide reductase activities of either MsrB or MsrA. In this study, we determined the kinetic parameters of mammalian and yeast MsrBs and MsrAs for the reduction of both free methionine sulfoxide (Met-O) and peptidyl Met-O under the same assay conditions. Catalytic efficiency of mammalian and yeast MsrBs towards free Met-O was >2000-fold lower than that of yeast fRMsr, which is specific for free Met-R-O. The ratio of free to peptide Msr activity in MsrBs was 1:20-40. In contrast, mammalian and yeast MsrAs reduced free Met-O much more efficiently than MsrBs. Their kcat values were 40-500-fold greater than those of the corresponding MsrBs. The ratio of free to peptide Msr activity was 1:0.8 in yeast MsrA, indicating that this enzyme can reduce free Met-O as efficiently as peptidyl Met-O. In addition, we analyzed the in vivo free Msr activities of MsrBs and MsrAs in yeast cells using a growth complementation assay. Mammalian and yeast MsrBs, as well as the corresponding MsrAs, had apparent in vivo free Msr activities. The in vivo free Msr activities of MsrBs and MsrAs agreed with their in vitro activities.

Aminoacylase 1-catalysed deacetylation of bioactives epoxides mycotoxin-derived mercapturates; 3,4-epoxyprecocenes as models of cytotoxic epoxides

Stocker, Pierre,Brunel, Jean Michel,De Rezende, Leandro,-Do Amaral, Antonia Tavares,Morelli, Xavier,Roche, Phillipe,Vidal, Nicolas,Giardina, Thierry,Perrier, Josette

, p. 1668 - 1675 (2012)

The mycotoxin aflatoxin B1 (AFB1) is a carcinogenic food contaminant which is metabolically activated by epoxydation. The metabolism of mycotoxins via the mercapturate metabolic pathway was shown, in general, to lead to their detoxication. Mercapturic acids thus formed (S-substitued-N-acetyl-l-cysteines) may be accumulated in the kidney and either excreted in the urine or desacetylated by Acylase 1 (ACY1) to yield cysteine S-conjugates. To be toxic, the N-acetyl-l-cysteine-S-conjugates first have to undergo deacetylation by ACY 1. The specificity and rate of mercapturic acid deacetylation may determine the toxicity, however the exact deacetylation processes involved are not well known. The aim of this study was to investigate the role of ACY1 in the toxicity of some bioactive epoxides from Aflatoxin B1. We characterized the kinetic parameters of porcine kidney and human recombinant aminoacylase-1 towards some aromatic and aliphatic-derived mercapturates analogue of mycotoxin-mercapturic acids and 3,4-epoxyprecocene, a bioactive epoxide derivated from aflatoxin. The deacetylation of mercapturated substrates was followed both by reverse phase HPLC and by TNBS method. Catalytic activity was discussed in a structure-function relationship. Ours results indicate for the first time that aminoacylase-1 could play an important role in deacetylating mercapturate metabolites of aflatoxin analogues and this process may be in relation with their cyto- and nephrotoxicity in human.

L-selenohomocysteine: One-step synthesis from L-selenomethionine and kinetic analysis as substrate for methionine synthases

Zhou, Zhaohui S.,Smith, April E.,Matthews, Rowena G.

, p. 2471 - 2475 (2000)

A single-step convenient synthesis of L-selenohomocysteine (SeHcy) from L-selenomethionine (SeMet) using sodium in liquid ammonia is described. Methionine synthases convert SeHcy to SeMet at rates comparable to their rates of conversion of L-homocysteine (Hcy) to L-methionine (Met). This study suggests that SeHcy generated from SeMet metabolism can be efficiently recycled to SeMet in mammals. (C) 2000 Elsevier Science Ltd.

Highly Stable Zr(IV)-Based Metal-Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography

Jiang, Hong,Yang, Kuiwei,Zhao, Xiangxiang,Zhang, Wenqiang,Liu, Yan,Jiang, Jianwen,Cui, Yong

supporting information, p. 390 - 398 (2021/01/13)

Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1′-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity.

STORAGE-STABLE FORM OF 3-METHYLTHIOPROPIONALDEHYDE

-

Paragraph 0058-0059, (2021/11/13)

A chemical compound of formula (I), and specific compositions including 3-methylthiopropionaldehyde, 3-methylthiopropane-1,1-diol, a compound of formula I and water, and processes for producing same and also the use of same may be used for the production of 2-hydroxy-4-(methylthio)butyronitrile, methionine hydantoin, methionine. Protected forms may be used for the storage and/or transport of 3-methylthiopropionaldehyde.

METHOD FOR MANUFACTURING METHIONINE

-

Paragraph 0080, (2021/04/02)

An object of the present invention is to provide a method for manufacturing methionine capable of achieving an improvement in ammonia removal efficiency. The manufacturing method of the present invention comprises a removal step of supplying a liquid containing a methionine salt, which is obtained by reacting 3-methylmercaptopropionaldehyde and hydrocyanic acid, or a compound obtained by reacting 3-methylmercaptopropionaldehyde and hydrocyanic acid, with carbon dioxide and ammonia to obtain a liquid containing 5-(2-methylmercaptoethyl)hydantoin and then hydrolyzing the 5-(2-methylmercaptoethyl)hydantoin, to a diffusion tower from an upper portion thereof while supplying a stripping gas to the diffusion tower from a lower portion thereof to remove ammonia contained in the liquid through stripping, and the stripping gas contains a process gas generated in a process of manufacturing methionine.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 26062-47-5