Paper
Dalton Transactions
Conclusions
Notes and references
New mixed-valence diruthenium complexes, whose metal
centers were triply bridged by halogeno and methoxido
ligands bearing a tridentate ligand, ebpma or bbpma, [{RuII,
III(Rbpma)}2(μ-X)(μ-Y)(μ-Z)](PF6)2 (X, Y = Cl−, Br− or CH3O−),
were synthesized through the reduction reactions of fac-
[RuIIIX3(ebpma)] (X = Cl−, Br−) to the Ru(II) state, accompanied
by the dissociation of chlorido ligand(s) under certain reaction
conditions. By the synthetic strategy using reduction of the
dinuclear core to control the reactivity of the bridging moiety,
a wide range of diruthenium complexes having different kinds
of bridging ligands could be designed and synthesized. The
interconversion among the triply bridged complexes was also
established by inducing dissociation of the bridging ligand(s)
through reduction of the Ru(II)–Ru(III) center to Ru(II)–Ru(II) or
reactions with acids. These kinds of bridging ligands could
be controlled by the reaction conditions such as solvent and
co-existing species in the reaction mixture. The Ru(II)–Ru(III)
1 B. Gerey, E. Gouré, J. Fortage, J. Pécaut and M.-N. Collomb,
Coord. Chem. Rev., 2016, 256, 1 and the references therein.
2 X. Liu and F. Wang, Coord. Chem. Rev., 2012, 256, 1115 and
the references therein.
3 H. Tanaka, Y. Nishibayashi and K. Yoshizawa, Acc. Chem.
Res., 2016, 49, 987.
4 I. Čorićand and P. L. Holland, J. Am. Chem. Soc., 2016, 138,
7200.
5 S. F. McWilliams and P. L. Holland, Acc. Chem. Res., 2015,
48, 2059.
6 B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean and
L. C. Seefeldt, Chem. Rev., 2014, 114, 4041 and the refer-
ences therein.
7 J. M. Smith, A. R. Sadique, T. R. Cundari, K. R. Rodgers,
G. L. Rodgers, R. J. Lachicotte, C. J. Flaschenriem,
J. Vela and P. L. Holland, J. Am. Chem. Soc., 2006, 128,
756.
mixed-valence state was classified as
a
Class III state,
8 R. Modak, Y. Sikdar, S. Mandal and S. Goswami, Inorg.
Chem. Commun., 2013, 37, 193.
9 B. Mabad, J.-P. Tuchagues, Y. T. Hwang and
D. N. Hendrickson, J. Am. Chem. Soc., 1985, 107, 2801.
according to the Robin–Day classification32 and Hush’s
theory,44 for all those series of diruthenium complexes
herein, which is quite a rare case. X-ray crystallography
revealed that the shape of the diruthenium core structure, 10 W. Kaim and B. Sarkar, Coord. Chem. Rev., 2007, 251, 584
{Ru2(μ-X)(μ-Y)(μ-Z)}, and the position of the bridging ligand and the references therein.
against the ebpma ligand were dependent on the kind of 11 W. Kaim and G. K. Lahiri, Angew. Chem., Int. Ed., 2007, 46,
bridging ligand; the core structure of triply halogeno- 1778 and the references therein.
bridged complexes, [2]2+ and [3]2+, resembled each 12 N. S. Hush, J. K. Beattie and V. M. Ellis, Inorg. Chem., 1984,
other and were relatively different from the one halogeno- 23, 3339.
and two methoxido-bridged complexes, [{RuII,III(ebpma)}2 13 P. Neubold, B. S. P. C. D. Vedova, K. Wieghardt, B. Nuber
(μ-X)2(μ-OCH3)]2+ (X = Cl; [1]2+, Br; [4]2+). The more σ-donat-
and J. Weiss, Inorg. Chem., 1990, 29, 3355.
ing methoxido ligand coordinates to the trans position 14 R. S. Armstrong, W. A. Horsfield and K. W. Nugent, Inorg.
toward the pyridine of ebpma. An electronic spin on the Chem., 1990, 29, 4551.
complex cation was delocalized over the {Ru2(μ-X)(μ-Y)(μ-Z)} 15 H. Miyasaka, H. Chang, K. Mochizuki and S. Kitagawa,
core to stabilize the Ru(II)–Ru(III) mixed-valence state, which Inorg. Chem., 2001, 40, 3544.
was almost identical to the Ru2.5–Ru2.5 state, regardless of 16 N. Matsuura, T. Kawamoto and T. Konno, Bull. Chem. Soc.
the kind or combination of bridging ligand. The dinuclear Jpn., 2006, 79, 297.
core structure, {Ru2(μ-X)(μ-Y)(μ-Z)}, and the electronic pro- 17 W. A. Clucas, R. S. Armstrong, I. E. Buys, T. W. Hanbley and
perties such as redox potentials and electronic transition K. W. Nugent, Inorg. Chem., 1996, 35, 6789.
energy of dinuclear complexes could be controlled by the 18 W. Kaim, C. Titze, A. Klein, A. Knödler and S. Zalis,
combination of bridging ligand(s).
Isr. J. Chem., 2001, 41, 145.
19 M. N. Hughes, D. O’Reardon, R. K. Poole,
M. B. Hursthouse and M. Thornton-pett, Polyhedron, 1987,
6, 1711.
20 I. S. Thorburn, S. J. Rettig and B. R. James, Inorg. Chem.,
1986, 25, 234.
Conflicts of interest
There are no conflicts to declare.
21 L. Quebatte, E. Solari, R. Scopelliti and K. Severin,
Organometallics, 2005, 24, 1404.
22 E. Eskelinen, T.-J. J. Kinnunen, M. Haukka and
T. A. Pakkanen, Eur. J. Inorg. Chem., 2002, 1169.
23 J. Chen, X. Chen, C. Zhu and J. Zhu, J. Mol. Catal. A: Chem.,
2014, 394, 198.
Acknowledgements
We show our deep appreciation to Prof. Dr Shigeki Kuwata and
Yoshihito Kayaki (Tokyo Institute of Technology) for the NMR 24 Y. Miyazato, T. Wada, M. Ohba and N. Matsushita, Chem.
measurements, Prof. Dr Ryo Miyamoto (Hirosaki University) Lett., 2016, 45, 1388.
for the comments on ESR signals and Prof. Dr Shinkoh Nanbu 25 J. Mola, I. Romero, M. Rodriguez, F. Bozoglian, A. Poater,
(Sophia University) for the DFT calculations.
M. Solâ, T. Parella, J. Benet-Buchholz, X. Fontrodona and
16188 | Dalton Trans., 2018, 47, 16182–16189
This journal is © The Royal Society of Chemistry 2018