C O M M U N I C A T I O N S
Table 2. Azidomethylene Inhibitors of Other Cysteine Proteases
Acknowledgment. The Australian funding agencies ARC and
NHMRC are gratefully acknowledged for financial support.
Supporting Information Available: Synthesis and characterization
1
data (rpHPLC retention times, H NMR spectra, high-resolution MS
Figure 2. Selected 1H NMR signals for aldehyde 1 (left panel) and azide
5 (right panel) in H2O/D2O (9:1, phosphate buffer pH 7.4, 37 °C) at 5 min
(A), 3 h (B), 24 h (C) or with 10-fold Ac-Cys for 5 min (D), 3 h (E), or
3 weeks (F). New signals in traces B, C, and E were ascribed to respective
protons of D-isomer. 5 remained unchanged under all these conditions (right
panel).
data) for 1-12, enzyme assays, and stabilities. This material is available
References
(1) Leung-Toung, R.; Li, W. R.; Tam, T. F.; Karimian, K. Curr. Med. Chem.
2002, 9, 979-1002.
resonance forms with positive and negative charge on central and
terminal nitrogens, respectively, noncovalent electrostatic interac-
tions between azide and cysteinyl-S or imidazole-N, might be
possible as proposed for sulfonyl azide inhibitors of COX-2.16
Azides are widely used in organic synthesis,9 but are remarkably
stable in biological environments. For example, azides are orthogo-
nal protecting groups in vivo,10 components of drugs, like the anti-
HIV drug AZT (only ∼1% is reduced to the amine metabolite by
cytochrome P450 after oral administration to rats11), and azido-sugars
are well tolerated in mice (300 mg/kg/day, 7 days).10 Azides 5 and
6 were completely stable in aqueous solutions (>1 month, 37 °C),
serum (24 h, 37 °C, pH 7.2), assay buffer (14 h, pH 7.2, 10 mM
dithiothreitol) ( enzyme, or 20 mM glutathione (pH 7.2, 9, 11), as
monitored quantitatively by LCMS. By contrast, aldehydes such
as 1 are unstable in aqueous solutions (Figure 2, left panel), existing
initially as a mixture of aldehyde and cyclic hemi-acetal (A)
followed by rapid aspartate racemization (B, C) in phosphate buffer
(t1/2 ) 4 h, 37 °C, pH 7.4). No aldehyde is detectable within minutes
in 10 mM Ac-Cys (D, E) or 20 mM glutathione. Azide 5 is very
stable under the same conditions (Figure 2, right panel). Under
harsher chemical, less biologically relevant, conditions, the azide
of 5 can be reduced (Pd/C/H2) to the amine, which is a 1000× less
potent caspase-1 inhibitor (IC50 ) 5 µM, SI).
Azides have not previously been reported as components of
protease inhibitors. Preliminary results here suggest that the
azidomethylene group can be used to produce potent inhibitors not
only of caspase-1, but also of other cysteine proteases. For example,
aldehydes Ac-DEVD-H17 and Cbz-Leu-Nle-H,18 were systematically
converted into nanomolar inhibitors (Table 2) of other caspases
(3, 8) and cathepsins (B, K, S) and are being further optimized for
potency, selectivity and bioavailability.
Many cysteine protease inhibitors with reactive electrophiles, like
aldehydes, ketones, and acyloxyketones, have failed clinical trials.2
Two caspase-1 inhibitors with a masked aldehyde, pralnacasan and
VX-765, have similarly faltered in clinical trials for arthritis. Very
few noncovalent inhibitors are known for cysteine proteases,6 so
this demonstration that the azidomethylene unit is much more inert
than aldehydes but still confers potent, competitive, and reversible
caspase-1 inhibition may be a valuable discovery toward new, less
reactive and/or noncovalent, inhibitors of caspases, cathepsins, and
other cysteine proteases.
(2) (a) Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43,
305-341. (b) Abbenante, G.; Fairlie, D. P. Med. Chem. 2005, 1, 71-
104.
(3) (a) Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E. Chem. ReV.
2002, 102, 4639-4750.(b) Otto, H.-H.; Schirmeister, T. Chem. ReV. 1997,
97, 133-171.
(4) (a) Rishton, G. M. Drug DiscoVery Today 2003, 8, 86-96. (b) Muegge,
I. Chem.sEur. J. 2002, 8, 1976-1981.
(5) Talanian, R. V.; Brady, K. D.; Cryns, V. L. J. Med. Chem. 2000, 43,
3351-3371.
(6) (a) Chowdhury, S. F.; Sivaraman, J.; Wang, J.; Devanathan, G.; Lachance,
P.; Qi, H. T.; Menard, R.; Lefebvre, J.; Konishi, Y.; Cygler, M.; Sulea,
T.; Purisima, E. O. J. Med. Chem. 2002, 45, 5321-5329. (b) Altmann,
E.; Renaud, J.; Green, J.; Farley, D.; Cutting, B.; Jahnke, W. J. Med.
Chem. 2002, 45, 2352-2354. (c) Altmann, E.; Green, J.; Tintelnot-
Blomley, M. Bioorg. Med. Chem. Lett. 2003, 13, 1997-2001. (d)
Thurmond, R. L.; Beavers, M. P.; Cai, H.; Meduna, S. P.; Gustin, D. J.;
Sun, S. Q.; Almond, H. J.; Karlsson, L.; Edwards, J. P. J. Med. Chem.
2004, 47, 4799-4801. (e) Gustin, D. J.; Sehon, C. A.; Wei, J. M.; Cai,
H.; Meduna, S. P.; Khatuya, H.; Sun, S. Q.; Gu, Y.; Jiang, W.; Thurmond,
R. L.; Karlsson, L.; Edwards, J. P. Bioorg. Med. Chem. Lett. 2005, 15,
1687-1691.
(7) Braddock, M.; Quinn, A. Nat. ReV. Drug DiscoV. 2004, 3, 1-10.
(8) Rano, T. A.; Timkey, T.; Peterson, E. P.; Rotonda, J.; Nicholson, D. W.;
Becker, J. W.; Chapman, K. T.; Thornberry, N. A. Chem. Biol. 1997, 4,
149-155.
(9) Scriven, E. F. V.; Turnbull, K. Chem. ReV. 1988, 88, 297-368.
(10) (a) Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Nature 2004, 430, 873-
877. (b) Dube, D. H.; Prescher, J. A.; Quang, C. N.; Bertozzi, C. R.
Glycobiology 2004, 14, 1073-1074.
(11) Pan-Zhou, X. R.; Cretton-Scott, E.; Zhou, X. J.; Yang, M. X.; Lasker, J.
M.; Sommadossi, J. P. Biochem. Pharmacol. 1998, 55, 757-766.
(12) (a) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K.
W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615-23. (b) Lipinski, C. A.
J. Pharmacol. Toxicol. Methods 2000, 44, 235-249. (c) Martin, Y. C. J.
Med. Chem. 2005, 48, 3164-3170.
(13) Wilson, K. P.; Black, J. A. F.; Thomson, J. A.; Kim, E. E.; Griffith, J. P.;
Navia, M. A.; Murcko, M. A.; Chambers, S. P.; Aldape, R. A.; Raybuck,
S. A.; Livingston, D. J. Nature 1994, 370, 270-275.
(14) (a) Tyndall, J. D. A.; Nall, T.; Fairlie, D. P. Chem. ReV. 2005, 105, 973-
1000. (b) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Fairlie, D. P.
Chem. ReV. 2004, 104, 6085-6117. (c) Fairlie, D. P.; Tyndall, J. D. A.;
Reid, R. C.; Wong, A. K.; Abbenante, G.; Scanlon, M. J.; March, D. R.;
Bergman, D. A.; Chai, C. L. L.; Burkett, B. A. J. Med. Chem. 2000, 43,
1271-1281. (d) Tyndall, J.; Fairlie, D. P. J. Mol. Rec. 1999, 12, 363-
370.
(15) Sleath, P. R.; Hendrickson, R. C.; Kronheim, S. R.; March, C. J.; Black,
R. A. J. Biol. Chem. 1990, 265, 14526-14528.
(16) Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. J. Med. Chem. 2001, 44,
3039-3042.
(17) Rotonda, J.; Nicholson, D. W.; Fazil, K. M.; Gallant, M.; Gareau, Y.;
Labelle, M.; Peterson, E. P.; Rasper, D. M.; Ruel, R.; Vaillancourt, J. P.;
Thornberry, N. A.; Becker, J. W. Nat. Struct. Biol. 1996, 3, 619-625.
(18) Catalano, J. G.; Deaton, D. N.; Furfine, E. S.; Hassell, A. M.; McFadyen,
R. B.; Miller, A. B.; Miller, L. R.; Shewchuk, L. M.; Willard, D. H., Jr.;
Wright, L. L. Bioorg. Med. Chem. Lett. 2004, 14, 275-278.
JA0637649
9
J. AM. CHEM. SOC. VOL. 128, NO. 38, 2006 12397