N. Bharti et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2243±2245
2245
Jawaharlal Nehru University, New Delhi for providing
laboratory facilities for biological studies.
References and Notes
1. Walsh, J. A. Rev. Infect. Dis. 1986, 8, 2228.
2. WHO. Report of the expert consultation on amoebiasis,
WHO. Epidemiol. Record 1997, 14, 4.
3. Reynolds, G. E. F., Ed.; Martindale the Extra Pharma-
copeia, 28th ed., The Pharmaceutical Press: London, 1982;
pp 968±970.
Figure 2. Structure of ruthenium complexes (1a: R=S-CH3, 2a: R=
S-CH2C6H5, 3a: R=NH2).
4. Goodman, A.; Rall, T. W.; Nies, A. S.; Taylor, P. The
Pharmacological Basis of Therapeutics, 8th edn; Pergamon
Press: New York, 1991; pp 1002±1005.
5. Johnson, P. J. Parasitology Today 1993, 9, 183.
6. Wright, C. W.; Phillipson, J. D. Phytotherapy Res. 1990, 4, 127.
7. (a) Farrell, N.; Skov, K. A. J. Chem. Soc., Chem. Commun.
1987, 1043. (b) Keppler, B. K. New J. Chem. 1990, 14, 389.
8. Scovill, J. P.; Klayman, D. L.; Franchino, C. F. J. Med.
Chem. 1982, 25, 1261.
9. Oong, O. E.; Martelli, S. Farmaco 1994, 49, 513.
10. (a) Loiseau, P. M.; Nguyen, D. X. Trop. Med. Int. Health
1996, 1, 379. (b) Casero, R. A.; Klayman, D. L.; Childs, G. E.;
Scovill, J. P.; Desjardins, R. E. Antimicrob. Agents Chemother.
1980, 18, 317.
11. Hadjipavlou-litina, D. Pharmazie 1996, 51, 468.
12. Quiroga, A. G.; Perez, J. M.; Lopez-Solera, I.; Masaguer,
J. R.; Luque, A.; Raman, P. et al. J. Med. Chem. 1998, 41,
1399.
Table 2. Antiamoebic activity of ligands and their ruthenium com-
plexes against HK-9 strain of E. histolytica
S. No. Compound
IC50 mg/mL S.D.aÂ10
1
1a
2
2a
3
3a
4
2-Acpy-SMDT
[Ru(ꢀ4-C8H12)(2-Acpy-SMDT)Cl2]
2-Acpy-SBDT
0.38
0.28
0.40
0.26
0.31
0.30
0.42
0.36
0.33
0.28
0.42
0.14
0.35
0.56
0.28
0.42
0.42
0.56
[Ru(ꢀ4-C8H12)(2-Acpy-SBDT)Cl2]
2-Acpy-TSC
[Ru(ꢀ4-C8H12)(2-Acpy-TSC)Cl2]
2-(2-Py-BMZ)
[Ru(ꢀ4-C8H12){2-(2-Py-BMZ)}Cl2]
Metronidazole
4a
5
aS.D.=Standard deviation.
microplate. After 72 h incubation in the presence of
serial dilutions of the compounds under test, inhibition
of growth was assessed by ®xing and then staining the
organism with eosin and measuring the optical density
with a microplate reader. Metronidazole was used as the
reference drug. The biological test was carried out using
DMSO as the solvent in which the complexes are stable.
The in vitro antiamoebic activity of new ruthenium
complexes and its ligands are listed in Table 2.
13. Sanchez-Delgado, R. A.; Navarro, M.; Perez, H.; Urbina,
J. A. J. Med. Chem. 1996, 39, 1095.
14. Sanchez-Delgado, R. A.; Lazardi, K.; Rincon, L.; Urbina,
J. A. J. Med. Chem. 1993, 36, 2041.
15. Das, M.; Livingstone, S. E. Br. J. Cancer 1978, 37, 466.
16. Chan, P. K. L.; Skov, K. A.; James, B. R.; Farrel, N. P.
Int. J. Radiation Oncology Biol. Phy. 1986, 12, 1059.
17. Clarke, M. J.; Lippard, S. J. ACS Symp. 1983, 209, 335.
18. Bharti, N.; Maurya, M. R.; Naqvi, F.; Bhattacharya, A.;
Bhattacharya, S.; Azam, A. Eur. J. Med. Chem. 2000, 35, 481.
19. Albers, M. O.; Ashworth, T. V.; Oosthuizen, H. E.;
Singleton, E. Inorg. Synth. 1989, 26, 68.
Metronidazole had a 50% inhibitory concentration
(IC50) of 0.33 mg/mL in our experiments which is close
to the previously reported IC50 of 0.32 mg/mL obtained
against E. histolytica.26 As shown in Table 2, complexes
1a and 2a cause a marked inhibition, while the parent
compounds are less active than metronidazole. Com-
pounds 3a and 4a showed slightly better activity as
compared to 3 and 4. These activities indicate that the
incorporation of the metal fragments generally pro-
duced an enhancement of the activity. Biological tests
on the eect of complexes are very encouraging. This
means that complexation to Ru increases the activity
of the parental drug. These results illustrate well
the potential of the novel metal-based approach for
the development of chemotherapeutic agents against
E. histolytica. Detailed in vivo studies, modi®cation of
these complexes and their mechanism of action are in
progress.
20. Das, M.; Livingstone, S. E. Inorg. Chim. Acta. 1979, 19, 5.
21. Ali, M. A.; Tarafder, M. T. H. J. Inorg. Nucl. Chem. 1977,
39, 1785.
22. Addison, A. W.; Burke, P. J. J. Heterocycl. Chem. 1981, 803.
23. 1a 1H NMR (DMSO-d6) d 3.34 (m, 4H, CH), 2.84 (m, 4H,
exo CH2), 2.08 (m, 4H, endo CH2), 2.54 (s, 3H, CH3), 2.61 (s,
3H, SCH3), 7.10±7.75 (m, 4H, aryl); IR v (cm 1) 3200 (NH),
1641 (CN), 1587 (CC), 1032 (CS), 510, 482, 450 (Ru±N,
Ru±S); l max (cm 1) (DMF) 30300, 26315, 18180. 2a 1H
NMR (DMSO-d6) d 3.50 (m, 4H, CH), 2.88 (m, 4H, exo CH2),
7.20±7.98 (m, 9H, aryl); IR v (cm 1) 3200 (NH), 1595 (CN),
1575 (CC), 1030 (CS), 509, 472 (Ru±N, Ru±S); l max
1
(cm 1) (DMF) 29410, 19010. 3a H NMR (DMSO-d6) d 2.50
(m, 4H, exo CH2), 2.08 (m, 4H, endo CH2), 2.87 (s, 3H, CH3),
7.83±8.85 (m, 4H, aryl); IR v (cm 1) 3250 (NH), 1613 (CN),
1
1577 (CC), 1026 (CS), 526, 457, 420 (Ru±N); l max (cm
)
(DMF) 31847, 27777. 4a 1H NMR (DMSO-d6) d 3.58 (m, 4H,
CH), 2.61 (m, 4H, exo CH2), 2.26 (m, 4H, endo CH2), 7.60±
8.30 (m, 4H, aryl); IR v (cm 1) 3050 (NH), 1613 (CN), 1585
(CC), 508, 454 (Ru±N); l max (cm 1) (DMF) 31950, 29410.
24. Maurya, M. R.; Jayaswal, M. N. J. Chem. Res. (S) 1998,
446.
Acknowledgements
25. Wright, C. W.; O'Neill, M. J.; Phillipson, J. D.; Warhurst,
D. C. Antimicrob. Agents Chemother. 1988, 1725.
26. Wright, C. W.; O'Neill, M. J.; Phillipson, J. D.; Warhurst,
D. C. J. Pharm. Pharmacol. 1987, 39, 105.
N. Bharti acknowledges the senior research fellowship
from CSIR, New Delhi, India. The authors thank Prof.
Alok Bhattacharya, and Dr. Sudha Bhattacharya,