2018
R. O. M. A. de Souza et al. / Tetrahedron Letters 50 (2009) 2017–2018
Table 2
δ
H N
Michael reaction between primary and secondary amines and acrylonitrile in the
presence of a lipase catalyst
R2
N
Coxyanion hole
δ
N
δ
R1
H N
Conversiona
H
Entry
Amine
Lipase
Time (h)
active site
O
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
Novozyme 435
Lipozyme TL IM
Lipozyme RM IM
PS Amano
Novozyme 435
Lipozyme TL IM
Lipozyme RM IM
PS Amano
Novozyme 435
Lipozyme TL IM
Lipozyme RM IM
PS Amano
Novozyme 435
Lipozyme TL IM
Lipozyme RM IM
PS Amano
0.8
1
1
6, 90%
6, 88%
6, 92%
6, 85%
7, 80%
7, 85%
7, 71%
7, 77%
8, 70%
8, 71%
8, 65%
8, 68%
9, 71%
9, 66%
9, 61%
9, 70%
H
O
N
Asp
N
H
O
1
Ser
His
1.2
1.2
1.2
0.8
1.2
1.4
1.4
1.2
1.4
1.6
2
Figure 1. Hypothesized mechanism for the lipase-catalyzed Michael addition.
Table 1
Michael reaction between primary and secondary amines and acrylonitrile without
the use of lipase catalyst
Entry
Amine
Time (h)
Conversiona
1.5
1
2
3
4
Benzylamine (1)
Diethylamine (2)
Diisopropylamine (3)
Pyrrolidine (4)
2
3
3
2.5
6, 92%
7, 83%
8, 74%
9, 72%
a
Based on GC analysis.
a
Based on GC analysis.
substances were confirmed by comparison with NMR data and
GC-MS analysis, and are included in the supplementary data.
So we envisaged that in the lipases’-catalyzed Michael reac-
tions, substrate activation would occur via protonation (or high
energy hydrogen bonding) of the nitrile so implying in a substrate
activation that would result in a rate acceleration effect (Fig. 1).
Based on this expectation, we undertook the present investiga-
tion on the Michael reaction between primary and secondary
amines (1–4) and acrylonitrile (5) envisaging a kind of substrate
activation.
To compare such expectation, we carried out Michael reaction
without the use of lipase as catalyst. The results displayed in
Table 1 show that all amines lead to the formation of Michael
addition product in 2–3 h.
Acknowledgment
The authors thank CNPq, CAPES, FAPERJ, and FINEP for the
financial support.
Supplementary data
Supplementary data associated with this article can be found, in
To investigate the effect of lipase catalyst on this type of reac-
tion, we decided to perform the same reaction in the presence of
different types of lipases, and the results are summarized in Table 2.
As shown in Table 2, all lipases evaluated led to a consistent
shorter reaction time tendency (about 50% time reduction) when
compared to the same reaction without the use of the lipase cata-
lyst. Novozyme 435 (Table 2, entries 1, 5, 9, and 13) gave the best
results, but the other systems were also effective.
In conclusion, it has been demonstrated that different lipases
that share in general the same active site are capable to catalyze
the Michael reaction between primary or secondary amines and
acrylonitrile. In comparison with the non-catalyzed reaction, this
methodology leads to a great improvement in the reaction time.
Studies are in progress to observe if enantioselectivity can be
achieved with beta-substituted acrylates or acrylonitriles and also
on the kinetics of these reactions.
References and notes
1. Secundo, F.; Carrea, G. Chem. Eur. J. 2003, 9, 3194.
2. Shaw, N. M.; Robins, K. T.; Kiener, A. Adv. Synth. Catal. 2003, 345, 425.
3. Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis: A Comprehensive
Handbook; Wiley-VCH: Weinheim, 2002.
4. Bertau, M. Curr. Org. Chem. 2002, 6, 987.
5. Reetz, M. T. Curr Opin. Chem. Biol. 2000, 6, 145.
6. (a) Andrade, J. M.; Peres, R. C.; Oestreicher, E. G.; Dariva, C.; Antunes, O. A. C. J.
Mol. Catal. B: Enzym. 2008, 55, 185; (b) Machado, G. D. C.; Gomes, M., Jr.;
Antunes, O. A. C.; Oestreicher, E. G. Process Biochem. 2005, 40, 3186; (c) Arcuri,
M. B.; Antunes, O. A. C.; Machado, S. P.; Almeida, C. H. F.; Oestreicher, E. G.
Amino Acids 2004, 27, 69; (d) Arcuri, M. B.; Sabino, S. J.; Antunes, O. A. C.;
Oestreicher, E. G. J. Fluorine Chem. 2003, 121, 55; (e) Arcuri, M. B.; Sabino, S. J.;
Antunes, O. A. C.; Oestreicher, E. G. J. Mol. Catal. B: Enzym. 2003, 21, 107; (f)
Arcuri, M. B.; Sabino, S. J.; Antunes, O. A. C.; Oestreicher, E. G. Catal. Lett. 2002,
79, 17; (g) Arcuri, M. B.; Antunes, O. A. C.; Sabino, S. J.; Pinto, G. F.; Oestreicher,
E. G. Amino Acids 2000, 19, 477.
7. Gotor, V. Bioorg. Med. Chem. 1999, 7, 2189.
8. van Rantwijk, F.; Hacking, M. A. P. J.; Sheldon, R. A. Monatsh. Chem. 2000, 131,
549.
9. Alfonso, I.; Gotor, V. Chem. Soc. Rev. 2004, 33, 201.
2. Experimental
10. Torre, O.; Alfonso, I.; Gotor, V. Chem. Comm. 2004, 1724.
11. Ishida, T.; Kato, S. J. Am. Chem. Soc. 2003, 125, 12035.
12. Firme, C. L.; Fernandes, J. L. N.; Leal, I. C. R.; Albuquerque, M. G.; Antunes, O. A.
C., unpublished results.
Reactions were carried out using amine (1 mmol), acrylonitrile
(1 mmol), and 2% w/w of Lipase, in toluene (5 mL). The reaction
was monitored by GC until the reaction finished. Structures of all
13. Jencks, W. P. Catalysis in Chemistry and Enzymology; Dover: New York, 1987.