Full Paper
1
2
3
4
5
6
7
8
9
were analyzed by GC and GC/MS. Each reaction was
performed at least three times and the reported data represent
the average of these reactions. Control reactions in the absence
of the catalyst that were carried out under the same conditions
as the catalytic runs show in all cases no conversion.
UV-vis Spectroscopy. UV-visible spectra were recorded
on Agilent 89090A spectrophotometer equipped with Unisoku
cooling system using 1 mmsolution of the complex in
acetonitrile at À408C. Complex 2 formed upon addition of
References
[1] R. G. Bergman, Nature 2007, 446, 391–393.
[2] a) B. D. Wallar, J. D. Lipscomb, Chem. Rev. 1996, 96, 2625–
2658; b) M. Costas, M. P. Mehn, M. P. , Jensen, L. Que Jr.
Chem. Rev. 2004, 104, 939–986; c) L. J. Murray, S. J. Lippard,
Acc. Chem. Res. 2007, 40, 466–474; d) C. Krebs, D. G. Fujimori,
C. T. Walsh, J. M. Bollinger Jr., Acc. Chem. Res. 2007, 40, 484–
492; e) C. E. Tinberg, S. J. Lippard, Acc. Chem. Res. 2011, 44,
280–288; f) C. Krebs, J. M. Bollinger Jr., S. J. Booker, Curr. Op.
Chem. Biol. 2011, 15, 291–303 g) R. Banerjee, Y. Proshlyakov,
J. D. Lipscomb, D. A. Proshlyakov, Nature 2015, 518, 431–434;
h) S. Kal, L. Que Jr., J. Biol. Inorg. Chem, 2017, 22, 339–365.
[3] a) L. Que Jr., W. B. Tolman, Nature 2008, 455, 333–340; b) S.
Friedle, E. Reisner, S. J. Lippard, Chem. Soc. Rev. 2010, 39,
2768–2779; c) X. Engelmann, I. Monte-Perez, K. Ray, Angew.
Chem. Int. Ed. 2016, 55, 7632–7649; d) F. Nastri, M. Chino, O.
Maglio, A. Bhagi-Damodaran, Y. Lu, A. Lombardi, Chem. Soc.
Rev. 2016, 45, 5020–5054. (not sure ref d) is appropriate as it is
about making artificial metalloenzymes using protein scaffolds)
[4] a) L. Que Jr., Acc. Chem. Res. 2007, 40, 493–500 K. b) W. Nam,
Acc. Chem. Res. 2007, 40, 522–531; c) A. R. McDonald, L. Que,
Coord. Chem. Rev. 2013, 257, 414–428; d) Ray, F. Felix, B.
Wang, W. Nam, J. Am. Chem. Soc. 2014, 136, 13942–13958;
e) M. Puri, L. Que Jr., Acc. Chem. Res. 2015, 48, 2443–2452
[5] a) S. Friedle, J. J. Kodanko, A. J. Morys, T. Hayashi, P. Moenne-
Loccoz, S. J. Lippard, J. Am. Chem. Soc. 2009, 131, 14508–
14520.; b) G. Xue, R. De Hont, E. Münck, L. Que Jr., Nature
Chem. 2010, 2, 400–405; c) A. Trehoux, J.-P. Mahy, F. A.
Avenier, Coord. Chem. Rev. 2016, 322, 142–158.
[6] a) M. S. Chen, M. C. White, Science 2007, 318, 783–787;
b) M. S. Chen, M. C. White, Science 2010, 327, 566–571; c) C.-
L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293–1314;
d) M. C. White, Science 2012, 335, 807–809; e) W. N. Oloo, L.
Que Jr., in Comprehensive Inorganic Chemistry II, J. Reedijk, K.
Poeppelmeier, Eds. Elsevier: Oxford, 2013; Vol. 6, pp 763–778;
f) K. P. Bryliakov, E. P. Talsi, Coord. Chem. Rev. 2014, 276, 73–
96; g) Gelalcha, F. G. Adv. Synth. Catal. 2014, 356, 261–299;
h) O. Cussó, X. Ribas, M. Costas, Chem. Commun. 2015, 51,
14285–14298; i) W. N. Oloo, L. Que Jr., Acc. Chem. Res. 2015,
48, 2612–2621.
10 30% H2O2 (5 eq). Then 10 eq. of substrate was added.
11
Moessbauer Spectroscopy. Mossbauer spectra were
12 recorded at 110 K and 298 K using 57Co point source. An
13 iron foil was used for the calibration of Doppler velocity.
14 The Moessbauer spectrum of 57[FeII(L)](H2O)2](CF3SO3)2,
15 (1) was measured as a solid at 298 K, while that for 2 was
16 obtained at 110 K on a sample prepared from 10 mM 57[FeII
17 (L)](H2O)2](CF3SO3)2 and 100 mM 30% H2O2 in
18 acetonitrile at À408C and then was frozen.
19
Resonance Raman Spectroscopy. Resonance Raman
20 spectra were collected with 647.1 nm excitation at 77 K in
21 acetonitrile. Samples were prepared at À408C from
22 ~3 mmsolutions of [FeII(L)](H2O)2](CF3SO3)2 in acetonitrile
23 with 10 equivalents 30% H216O2 or 2% H218O2 and then frozen
24 onto a gold-plated copper cold finger in thermal contact with a
25 Dewar flask containing liquid nitrogen.
26
X-ray Crystallography. Single crystal X-ray data for FeII
27 (L)(H2O2(](CF3SO3)2 formed by recrystallizationwas collected
28 on a Rigaku XtaLab PRO equipped with PILATUS 200
29 diffractometer with Mo Ka (l=0.71073 nm) radiation and
30 graphite monochromator. Measurement were performed at
31 100 K under liquid N2 to achieve better quality data. The data
32 were processed using CrysAlisPro 1.171.39.4c. Structures
33 were solved by direct methods with SHELXS or SHELXT.
34 Full-matrix least-squares refinement was based on F2 with
35 SHELXL-2016. Crystal data collection and refinement param-
36 eters are given in the crystallographic CIF files also available
37 in Supporting Information.
[7] V. Madhu, B. Ekambaran, L. J. W. Shimon, Y. Diskin-Posner, G.
Leitus, R. Neumann, Dalton Trans. 2010, 39, 7266–7275.
[8] S. O. Schmidt, S. Kisslinger, C. Wuertele, S. Bonnet, S.
Schindler, F. Tuczek, Z. Anorgan. Allg. Chem. 2013, 639, 2774–
2778.
38
39
40 Acknowledgements
41
[9] E. Münck, in Physical Methods in Bioinorganic Chemistry.
Spectroscopy and Magnetism (Ed.: L. Que Jr.), University
Science Books, Sausalito, CA, 2000, pp. 287–319.
[10] a) M. Kodera, M. Itoh, K. Kano, T. Funabiki, M. Reglier, Angew.
Chem. Int. Ed. 2005, 44, 7104–7106; b) M. Kodera, Y. Kawahara,
Y. Hitomi, T. Nomura, T. Ogura, Y. Kobayashi, J. Am. Chem.
Soc. 2012, 134, 13236–13239; c) M. Kodera, S. Ishiga, T. Tsuji,
K. Sakurai, Y. Hitomi, Y. Shiota, P. K. Sajith, K. Yoshizawa, K.
Mieda, T. Ogura, Chem. Eur. J. 2016, 22, 5924–5936.
[11] a) M. A. Cranswick, K. K. Meier, X. Shan, A. Stubna, J. Kaizer,
M. P. Mehn, E. Münck, L. Que Jr., Inorg. Chem. 2012, 51,
10417–10426; b) X. Zhang, H. Furutachi, S. Fujinami, S.
Nagatomo, Y. Maeda, Y. Watanabe, T. Kitagawa, M. Suzuki, J.
Am. Chem. Soc. 2005, 127, 826–827; c) A. T. Fiedler, X. Shan,
M. P. Mehn, J. Kaizer, S. Torelli, J. R. Frisch, M. Kodera, L.
Que Jr., J. Phys. Chem. A 2008, 112, 13037–13044; d) J. S. Pap,
M. A. Cranswick, É. Balogh-Hergovich, G. Baráth, M. Giorgi,
42 This research was supported by the United States-Israel
43 Binational Science Foundation (grant #2004270 to R. N. and
44 L. Q.) and the US National Institutes of Health (grant
45 GM38767 to L. Q. and postdoctoral fellowship ES017390 to
46 M. A. C.). J.E.M.N.K. thanks the Alexander von Humboldt
47 Foundation for a Feodor Lynen Research Fellowship. We also
48 acknowledge Prof. Christopher J. Cramer and the Minnesota
49 Supercomputing Institute (MSI) at the University of Minnesota
50 for providing computational resources. Iraklii Ebralidze is
51 thanked for his initial research in this area. R. N. is the
52 Rebecca and Israel Professor of Organic Chemistry.
53
54
55
56
Isr. J. Chem. 2017, 57, 1–10
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
8
ÞÞ
These are not the final page numbers!