Paper
PCCP
5 M. Deetlefs, K. R. Seddon and M. Shara, Phys. Chem. Chem.
Phys., 2006, 8, 642–649.
For example, 1-butyl-3-methylimidazolium tetrafluoroborate
([BMIM][BF4]) and 1-butyl-3-methylimidazolium methylsulfate
([BMIM][MeSO4]) are water-miscible, while 1-butyl-3-methyl-
imidazolium hexafluorophosphate ([BMIM][PF6]) and 1-butyl-
3-methylimidazolium bis(trifluoromethanesulfonyl) imide
([BMIM][Tf2N]) are not, though these ionic liquids possess
nearly similar polarity on the Reichardt scale.59 In addition, the
coordination strengths of the [BF4] and [PF6] anions are also
comparable.60 Examining the log P values of the ionic liquids
suggests that log P predicts the partitioning of ionic liquids
between water and 1-octanol.
6 Z. Hu and C. J. Margulis, Acc. Chem. Res., 2007, 40, 1097–1105.
7 C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen and
T. G. A. Youngs, Acc. Chem. Res., 2007, 40, 1146–1155.
8 S. Saha, J. Phys. Chem. B, 2006, 110, 2777–2781.
9 J. F. Brennecke and E. J. Maginn, AIChE J., 2001, 47,
2384–2389.
10 J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares and
D. W. Armstrong, Chem. Commun., 2003, 2444–2445.
11 P. Attri, P. Venkatesu and T. Hofman, J. Phys. Chem. B, 2011,
115, 10086–10097.
12 R. Sheldon, Chem. Commun., 2001, 2399–2407.
13 F. van Rantwijk and R. A. Sheldon, Chem. Rev., 2007, 107,
2757–2785.
14 A. Shariati, R. A. Sheldon, G. Witkamp and C. J. Peters,
Green Chem., 2008, 10, 342–346.
4. Conclusions
In short we noted that (1) the apparent partition coefficient of
ionic liquids is concentration dependent and predominantly
influenced by the nature of anions. (2) The [HSO4]À-based ionic
liquids show flipping in log P values as a function of concen-
tration due to the formation of aggregates, whereas [EtSO4]À-
based ionic liquids possess a linear relationship of log P with
concentration. (3) This different behavior of [HSO4]À and
[EtSO4]À-based ionic liquids can be correlated with the variations
in hydrogen bond accepting basicity (b) of these anions as well as
the possibility of aggregate formation. (4) A change in the cationic
core from imidazolium to pyridinium significantly modifies the
log P values due to: p–p interactions, the number of electronega-
tive atoms present in the cationic ring and the hydrophobicity of
the cationic ring. (5) The alkyl chain length in the cationic and
the anionic part of ionic liquids also affects the logP values;
hydrophobicity of anions increases as [HSO4]À o [EtSO4]À o
[BuSO4]À. Ultimately, the apparent partition coefficients can
illustrate the scale of hydrophobicity or hydrophilicity of
ionic liquids.
¨
¨
15 B. Jastorff, R. Stormann, J. Ranke, K. Molter, F. Stock,
B. Oberheitmann, W. Hoffmann, J. Hoffmann, M. Nu¨chter,
B. Ondruschka and J. Filser, Green Chem., 2003, 5, 136–142.
16 N. D. Khupse and A. Kumar, J. Solution Chem., 2009, 38,
589–600.
17 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 1971, 71, 525–616.
18 C. Hansch, Acc. Chem. Res., 1993, 26, 147–153.
19 C. Hansch, A. Leo and D. H. Hoekman, Exploring QSAR:
Fundamentals and Applications in Chemistry and Biology, Am.
Chem. Soc., Washington, DC, 1995.
20 J. Sangster, Octanol-Water partition coefficients: Fundamen-
tals and Physical Chemistry, John Wiley & Sons, Chichester,
1997.
21 C. Hansch, A. Leo and D. H. Hoekman, Exploring QSAR:
Hydrophobic, Electronic and Steric Constants, Am. Chem.
Soc., Washington, DC, 1995.
22 W. M. Meylan, P. H. Howard, R. S. Boethling, D. Aronson,
H. Printup and S. Gouchie, Environ. Toxicol. Chem., 1999, 18,
664–672.
Acknowledgements
23 A. T. Fisk, R. J. Norstrom, C. D. Cymbalisty and D. C. Muir,
Environ. Toxicol. Chem., 1998, 17, 951–961.
PJ thanks CSIR, New Delhi, for awarding her a Senior Research
Fellowship and Dr Gitanjali Rai for her valuable guidance during
the initial stage of this investigation, while A. K. thanks DST, New
Delhi, for awarding him a JC Bose National Fellowship (SR/S2/
JCB-26/2009). An anonymous referee is thanked for bringing out
the importance of citations number ref. 13, 59 and 60.
¨
24 T. Koddermann, D. Reith and A. Arnold, J. Phys. Chem. B,
2013, 117, 10711–10718.
´
25 U. Domanska, E. Bogel-Łukasik and R. Bogel-Łukasik,
Chem. – Eur. J., 2003, 9, 3033–3041.
26 S. H. Lee and S. B. Lee, J. Chem. Technol. Biotechnol., 2009,
84, 202–207.
27 S. P. M. Ventura, R. L. Gardas, F. Gonçalves and J. A. P.
Coutinho, J. Chem. Technol. Biotechnol., 2011, 86, 957–963.
28 L. Ropel, L. S. Belveze, S. N. V. K. Aki, M. A. Stadtherr and
J. F. Brennecke, Green Chem., 2005, 7, 83–90.
29 L. J. Ropel, Diffusion Coefficients and 1-Octanol-Water parti-
tion Coefficients of Ionic Liquids, University of Notre Dame,
2004.
References
1 M. J. Earle and K. R. Seddon, Pure Appl. Chem., 2000, 72,
1391–1398.
2 R. D. Rogers and K. R. Seddon, Ionic Liquids as Green
Solvents: Progress and Prospects, American Chemical Society,
Washington, DC, 2003, vol. 856.
´
30 U. Domanska, Pure Appl. Chem., 2005, 77, 543–557.
3 P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis,
Weinheim, Germany, 2003.
´
31 U. Domanska, A. R˛ekawek and A. Marciniak, J. Chem. Eng.
Data, 2008, 53, 1126–1132.
32 T. Fujita, J. Iwasa and C. Hansch, J. Am. Chem. Soc., 1964, 86,
5175–5180.
4 M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. Canongia
Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon and
J. A. Widegren, Nature, 2006, 439, 831–834.
Phys. Chem. Chem. Phys.
This journal is ©the Owner Societies 2015