Angewandte Chemie International Edition
10.1002/anie.202005739
RESEARCH ARTICLE
delocalisation for the short contacts within series 3-Y, but not for
the longer-range interactions occurring in balance 2. The
carbonyl-carbonyl distances in balance series 1-X were
intermediate between those found in series 3-Y and balance 2,
but only the structures of balance 1-Me containing the shortest
OC distances were found to facilitate weak n→*
delocalisation. The distance dependency of the orbital
delocalisation component has important consequences for
molecular recognition in solution; the equilibrium separations of
[4]
a) B. C. Gorske, B. L. Bastian, G. D. Geske, H. E. Blackwell, J. Am.
Chem. Soc. 2007, 129, 8928–8929; b) B. C. Gorske, J. R. Stringer, B. L.
Bastian, S. A. Fowler, H. E. Blackwell, J. Am. Chem. Soc. 2009, 131,
16555–16567.
[
5]
a) D. R. Davies, J. J. Blum, Acta Crystallogr. 1955, 8, 129–136; b) S. S.
C. Chu, G. A. Jeffrey, T. Sakurai, Acta Crystallogr. 1962, 15, 661–671;
c) W. Bolton, Acta Crystallogr. 1963, 16, 166–173; d) W. Bolton, Acta
Crystallogr. 1964, 17, 147–152; e) W. Bolton, Acta Crystallogr. 1965,
18, 5–10.
[6]
[7]
F. R. Fischer, P. A. Wood, F. H. Allen, F. Diederich, Proc. Natl. Acad.
Sci. 2008, 105, 17290–17294.
intermolecular solvent-solute contacts allow attenuation via
electrostatic[14]-[15],[21]
and dispersion interactions,[23] but such
E. C. Vik, P. Li, P. J. Pellechia, K. D. Shimizu, J. Am. Chem. Soc. 2019,
1
41, 16579–16583.
a) R. W. Newberry, R. T. Raines, Acc. Chem. Res. 2017, 50, 1838–
846; b) R. W. Newberry, G. J. Bartlett, B. VanVeller, D. N. Woolfson,
intermolecular equilibrium separations may not be short enough
to permit the solvent to compete with short-range intramolecular
orbital delocalisation. Indeed, such a situation may account for
the ability of intramolecular stereoelectronic effects (i.e. orbital
delocalisation) to exert conformational control even in the
presence of solvent competition.[28] Our results have important
implications in the design of molecular systems seeking to
exploit such carbonyl interactions, particularly in protein design,
where the physiochemical origins of specific carbonyl
interactions may have far-reaching consequences on structure
[
8]
1
R. T. Raines, Protein Sci. 2014, 23, 284–288; c) G. J. Bartlett, A.
Choudhary, R. T. Raines, D. N. Woolfson, Nat. Chem. Biol. 2010, 6,
615–620.
[9]
K. J. Kamer, A. Choudhary, R. T. Raines, J. Org. Chem. 2012, 78,
2099–2103.
[
10] a) S. B. Pollock, S. B. H. Kent, Chem. Commun. 2011, 47, 2342–2344;
b) X. Li, P. Liu, K. N. Houk, V. B. Birman, J. Am. Chem. Soc. 2008, 130,
13836–13837; c) A. Choudhary, K. J. Kamer, M. W. Powner, J. D.
Sutherland, R. T. Raines, ACS Chem. Biol. 2010, 5, 655–657.
and
behaviour.
Furthermore,
similarly
discordant
[
11] a) H. Zheng, H. Ye, X. Yu, L. You, J. Am. Chem. Soc. 2019, 141, 8825–
physicochemical rationalisations have been reported for a range
of other interactions, notably chalcogen bonding.[17, 25] It seems
plausible that similar distance-dependent orbital contributions
may contribute to other classes of interactions. Consequently,
we hope that similar investigations will help to reconcile
conflicting results and deepen the understanding of a broader
range or molecular interactions.
8
833; b) H. Chen, H. Ye, Y. Hai, L. Zhang, L. You, Chem. Sci. 2020, 11,
2707–2715.
[12] H. B. Burgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95,
065–5067.
13] F. R. Fischer, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed.
007, 46, 8270–8273; Angew.Chem. 2007, 119, 8418–8421.
5
[
[
[
[
2
14] a) I. K. Mati, C. Adam, S. L. Cockroft, Chem. Sci. 2013, 4, 3965–3972;
b) I. K. Mati, S. L. Cockroft, Chem. Soc. Rev. 2010, 39, 4195–4205.
15] K. B. Muchowska, C. Adam, I. K. Mati, S. L. Cockroft, J. Am. Chem.
Soc. 2013, 135, 9976–9979.
16] N. Dominelli-Whiteley, J. J. Brown, K. B. Muchowska, I. K. Mati, C.
Adam, T. A. Hubbard, A. Elmi, A. J. Brown, I. A. W. Bell, S. L. Cockroft,
Angew. Chem. Int. Ed. 2017, 56, 7658–7662; Angew. Chem. 2017, 129,
Acknowledgements
We thank Syngenta (DJP, KL), the EPSRC (KM EP/H021620/1),
the Leverhulme Trust (Philip Leverhulme Prize, SLC) and Pfizer
Ltd (CA) for funding.
7766–7770.
[
[
17] D. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139,
15160–15167.
18] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E.
DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio,
R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A.
Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer,
K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney,
T. D. Crawford, C. D. Sherrill, J. Chem. Theor. Comp. 2017, 13, 3185–
Keywords: Noncovalent interactions • Pi interactions •
Electrostatic interactions • Computational chemistry
[
1]
a) R. Paulini, K. Müller, F. Diederich, Angew. Chem. Int. Ed. 2005, 44,
788–1805; Angew. Chem. 2005, 117, 1820–1839; b) C. Fah, L. A.
1
3197.
Hardegger, M.-O. Ebert, W. B. Schweizer, F. Diederich, Chem.
Commun. 2010, 46, 67–69.
[
[
19] a) S. L. Cockroft, C. A. Hunter, Chem. Commun. 2006, 3806–3808; b)
C. Adam, L. Yang, S. L. Cockroft, Angew. Chem. Int. Ed. 2015, 54,
[
2]
a) I. A. Guzei, A. Choudhary, R. T. Raines, Acta Crystallogr. E 2013, 69,
o805–o806; b) A. Choudhary, K. J. Kamer, R. T. Raines, J. Org. Chem.
1164–1167; Angew. Chem. 2015, 127,1180–1183. c) L. Yang, C. Adam,
S. L. Cockroft, J. Am. Chem. Soc. 2015, 137, 10084–10087.
2011, 76, 7933–7937; c) H. A. Sparkes, P. R. Raithby, E. Clot, G. P.
20] a) C. C. Robertson, R. N. Perutz, L. Brammer, C. A. Hunter, Chem. Sci.
Shields, J. A. Chisholm, F. H. Allen, CrystEngComm 2006, 8, 563–570;
d) R. W. Newberry, B. VanVeller, I. A. Guzei, R. T. Raines, J. Am.
Chem. Soc. 2013, 135, 7843–7846; e) J. A. Hodges, R. T. Raines, Org.
Lett. 2006, 8, 4695–4697; f) S. Blanco, J. C. López, S. Mata, J. L.
Alonso, Angew. Chem. Int. Ed. 2010, 49, 9187–9192; Angew. Chem.
2
014, 5, 4179–4183; b) M. Iwaoka, H. Komatsu, T. Katsuda, S.
Tomoda, J. Am. Chem. Soc. 2004, 126, 5309–5317; c) M. Iwaoka, H.
Komatsu, T. Katsuda, S. Tomoda, J. Am. Chem. Soc. 2002, 124, 1902–
1909; d) D. H. R. Barton, M. B. Hall, Z. Lin, S. I. Parekh, J. Reibenspies,
J. Am. Chem. Soc. 1993, 115, 5056–5059; e) M. G. Sarwar, B. Dragisic,
L. J. Salsberg, C. Gouliaras, M. S. Taylor, J. Am. Chem. Soc. 2010,
2010, 122, 9373–9378.
[
3]
a) M. P. Hinderaker, R. T. Raines, Protein Sci. 2003, 12, 1188–1194;
b) P. H. Maccallum, R. Poet, E. J. Milner-White, J. Mol. Biol. 1995, 248,
1
32, 1646–1653.
[
21] a) C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310–5324; Angew.
Chem. 2004, 116, 5424–5439; b) R. Cabot, C. A. Hunter, L. M. Varley,
Org. Biomol. Chem. 2010, 8, 1455–1462.
374–384; c) P. H. Maccallum, R. Poet, E. James Milner-White, J. Mol.
Biol. 1995, 248, 361–373; d) C. M. Deane, F. H. Allen, R. Taylor, T. L.
Blundell, Protein Eng. 1999, 12, 1025–1028; e) C. Siebler, R. S.
Erdmann, H. Wennemers, Angew. Chem. Int. Ed. 2014, 53, 10340–
[
[
22] S. L. Cockroft, C. A. Hunter, Chem. Commun. 2009, 3961–3963.
23] a) L. Yang, C. Adam, G. S. Nichol, S. L. Cockroft, Nat. Chem. 2013, 5,
1
0344; Angew. Chem. 2014, 126, 10508–10512; f) C. E. Jakobsche, A.
1
006–1010; b) L. Yang, J. B. Brazier, T. A. Hubbard, D. M. Rogers, S. L.
Cockroft, Angew. Chem. Int. Ed. 2016, 55, 912–916; Angew.Chem.
016, 128, 924–928; c) S. He, F. Biedermann, N. Vankova, L.
Choudhary, S. J. Miller, R. T. Raines, J. Am. Chem. Soc. 2010, 132,
6
651–6653; g) A. Choudhary, R. T. Raines, Protein Sci. 2011, 20,
077–1081.
2
1
6
This article is protected by copyright. All rights reserved.