Inorganic Chemistry
Communication
3
−1
2+
of 2.99 cm mol K for the eight uncoupled Cu centers (S =
/2
REFERENCES
■
1
3
−1
, assuming g = 2.0), to 0.65 cm mol K at 2 K, indicating
significant antiferromagnetic exchange interactions within the
(1) (a) Long, D. L.; Burkholder, E.; Cronin, L. Chem. Soc. Rev. 2007,
36, 105. (b) Long, D. L.; Tsunashima, R.; Cronin, L. Angew. Chem., Int.
Ed. 2010, 49, 1736. (c) Mizuno, N.; Misono, M. Chem. Rev. 1998, 98,
99. (d) Sun, C. Y.; Liu, S. X.; Liang, D. D.; Shao, K. Z.; Ren, Y. H.; Su, Z.
M. J. Am. Chem. Soc. 2009, 131, 1883.
(2) (a) Xu, Y.; Zhang, K. L.; Zhang, Y.; You, X. Z.; Xu, J. Q. Chem.
Commun. 2000, 2, 153. (b) Niu, J. Y.; Guo, D. J.; Wang, J. P.; Zhao, J. W.
Cryst. Growth Des. 2004, 4, 241. (c) Liu, C. M.; Zhang, D. Q.; Zhu, D. B.
Cryst. Growth Des. 2003, 3, 363.
2+
−1
Cu ions. In addition, the plot of χM versus T in the range of
0−300 K obeys the Curie−Weiss law and give the Weiss3
1
8
constant θ = −262.04 K and the Curie constant C = 5.21 cm
−1
mol K. The large and negative value of θ indicates a dominant
antiferromagnetic coupling interaction between the neighboring
2
+
spins of Cu centers, which are stronger than the other reported
1
5,16
multicopper clusters.
(3) (a) Tripathi, A.; Hughbanks, T.; Clearfield, A. J. Am. Chem. Soc.
The thermogravimetric analysis (TGA) of 1 (Figure S4 in the
SI) exhibits two steps of weight loss processes with a total loss of
9.85% (calcd 20.78%). The TGA curve for 1 shows an initial
weight loss of 3.93% (calcd 4.11%) from 70 to 260 °C
corresponding to the removal of water and ethyl alcohol
molecules, while the weight loss at 260−720 °C, 15.92% (calcd
6.67%), is ascribed to decomposition of the 2,2′-bpy ligands.
A large number of ecofriendly POM-based solid acids and their
2003, 125, 10528. (b) Galan
Gomez-García, C. J.; Coronado, E.; Ouahab, L. Angew. Chem., Int. Ed.
995, 34, 1460. (c) Liu, L.; Zhang, D.; Xiong, M.; Zhu, D. Chem.
Commun. 2002, 13, 1416. (d) Zheng, S. T.; Yuan, D. Q.; Zhang, J.; Yang,
G. Y. Inorg. Chem. 2007, 46, 4569.
́ ́ ́
-Mascaros, J. R.; Gimenez-Saiz, C.; Triki, S.;
́
1
1
(
4) (a) An, H. Y.; Wang, E. B.; Xiao, D. R.; Li, Y. G.; Su, Z. M.; Xu, L.
Angew. Chem., Int. Ed. 2006, 45, 904. (b) Niu, J. Y.; Wang, Z. L.; Wang, J.
P. Inorg. Chem. Commun. 2003, 6, 1272. (c) Kortz, U.; Muller, A.; van
1
̈
Slageren, J.; Schnack, J.; Dalal, N. S.; Dressel, M. Coord. Chem. Rev. 2009,
salts have been employed as catalysts in many organic reactions,
particularly in green esterification, oxidation of styrene and
acetylation of phenols with acetic anhydride, and nitration of
253, 2315−2327.
(
5) (a) Kehrmann, F. Z. Anorg. Chem. 1892, 1, 423−441.
(
b) Kehrmann, F.; Freinkel, M. Berichte 1892, 25, 1966−1973.
(6) Galan-Mascaros, J. R.; Gimenez-Saiz, C.; Triki, S. L.; Gom
Garcïa, C. J.; Coronado, E.; Ouahab, A. L. Angew. Chem., Int. Ed. 1995,
07, 1601; Angew. Chem., Int. Ed. 1995, 34, 1460.
7) (a) Reinoso, S.; Vitoria, P.; Gutierrez-Zorrilla, J. M.; Lezama, L.;
Felices, L. S.; Beitia, J. I. Inorg. Chem. 2005, 44, 9731. (b) Felices, L. S.;
Vitoria, P.; Gutierrez-Zorrilla, J. M.; Lezama, L.; Reinoso, S. Inorg. Chem.
2006, 45, 7748. (c) Reinoso, S.; Vitoria, P.; Felices, L. S.; Lezama, L.;
Gutierrez-Zorrilla, J. M. Inorg. Chem. 2006, 45, 108.
8) Ren, Y. H.; Hu, Y. C.; Kong, Z. P.; Gu, M.; Yue, B.; He, H. Y.
Chem.Eur. J. 2013, 10−11, 1821.
9) (a) Shi, Z. Y.; Peng, J.; Li, Y. G.; Zhang, Z. Y.; Alimaje, K.; Wang, X.
1
7−19
́
́
́
́
ez-
phenols.
By linking copper complexes and monovacant
Keggin polyoxoanion to the novel structure, this approach will
offer a way to fine-tune potential catalytic properties. Our
experimental results figure that a high yield of 90.5% and
selectivity of 97.8% for monododecyl phosphate were achieved
with toluene as the dehydrant when the direct esterification of
phosphoric acid with lauryl alcohol was carried out at 110 °C for
1
(
́
́
́
(
24 h under an optimum catalyst dosage of 0.5% (mass fraction).
In summary, we have successfully obtained a dumbbell-like
(
dimeric Keggin polyoxoanion that contains the first dicopper-
II)-substituted monovacant Keggin polyoxoanion under hydro-
CrystEngComm 2013, 15, 7583. (b) Wang, Y.; Wu, F. Q.; Ye, L.; Wang,
T. G.; Wang, G. W.; Shi, S. Y.; Xiao, L. N.; Cui, X. B.; Xu, J. Q. Inorg.
Chem. Commun. 2010, 13, 703.
(
thermal conditions, which leads to a deeper understanding of the
lacunary polyoxoanions. Compound 1 demonstrates the
efficiency of hydrothermal methods for the synthesis of new
novel POMs and exhibits unprecedented and extended vacant
molecular structures. A tetranuclear copper(II) cluster sand-
wiched between two monovacant phosphotungstates has thus
been isolated, and a magnetic model has observed a strong
antiferromagnetic interaction between copper(II) centers.
(10) (a) Li, S.; Zhu, W.; Ma, H. Y.; Liu, H.; Yu, T. T. RSC Adv. 2013, 3,
9
770. (b) Cui, J. W.; Cui, X. B.; Yu, H. H.; Xu, J. Q.; Yi, Z. H.; Duan, W. J.
Inorg. Chim. Acta 2008, 361, 2641.
11) Wang, Y.; Peng, Y.; Xiao, L. N.; Hu, Y. Y.; Wu, F. Q.; Cui, X. B.;
Xu, J. Q. CrystEngComm 2012, 14, 1049.
(
(12) Ian, D. B. Chem. Rev. 2009, 109, 6858.
(13) (a) Li, B.; Zhao, D.; Yang, G. Y. J. Cluster Sci. 2009, 20, 629.
(
(
b) Wang, C. M.; Zheng, S. T.; Yang, G. Y. J. Cluster Sci. 2009, 20, 489.
c) Han, X. M.; You, W. S.; Dai, L. M.; Qi, L. J.; Fang, Y.; Li, W. W. J.
Cluster Sci. 2009, 20, 707. (d) Kortz, U.; Nellutla, S.; Stowe, A. C.; Dalal,
N. S.; Rauwald, U.; Danquah, W.; Ravot, D. Inorg. Chem. 2004, 43,
2038−2317. (e) Saritha, N.; Johan, V. T.; Naresh, S. D.; Bi, L. H.; Ulrich,
K.; Bineta, K.; Louis, N.; Gregory, A. K.; Alan, G. M. Inorg. Chem. 2005,
ASSOCIATED CONTENT
■
*
S
Supporting Information
X-ray crystallographic data in CIF format, experimental section,
synthetic discussion, crystal data, catalytic activity experimental
details, IR, TGA, XRD, and selected bond length tables. This
4
4, 9795−9806.
14) Yang, H. X.; Guo, S. P.; Tao, J.; Lin, J. X.; Cao, R. Cryst. Growth
Des. 2009, 9, 4735.
15) (a) Wang, X. J.; Lu, X. M.; Li, P. Z.; Pei, X. H.; Ye, C. H. J. Coord.
(
(
Chem. 2008, 61, 3753. (b) Niu, J. Y.; Zhang, S. W.; Chen, H. N.; Zhao, J.
W.; Wang, J. P. Cryst. Growth Des. 2011, 11, 3769. (c) Niu, J. Y.; Wang,
K. H.; Chen, H. N.; Zhao, J. W.; Wang, J. P.; Bai, Y.; Dang, D. B. Cryst.
Growth Des. 2009, 9, 4362.
AUTHOR INFORMATION
■
(16) (a) Lu, X. M.; Shi, X. D.; Bi, Y. G.; Yu, C.; Chen, Y. Y.; Chi, Z. X.
*
Chem.Eur. J. 2009, 34, 5267. (b) Ruan, C. Z.; Liang, M. X.; Kong, X. J.;
Ren, Y. P.; Long, N. S. Inorg. Chem. 2012, 51, 7587.
Notes
(
17) (a) Mizuno, N.; Yamaguchi, K. Chem. Rec. 2006, 6, 12.
b) Cartuyvels, E.; Absillis, G.; Parac-Vogt, T. N. Chem. Commun.
008, 1, 85.
18) Zhao, L. P.; Zhao, L. J. Guangxi Chemical Industry 2000, 29, 46−
9.
(19) Shen, L.; Len, Y.; Wang, J.; Xu, Y. Chin. J. Catal. 2010, 31, 156−
162.
The authors declare no competing financial interest.
(
2
(
4
ACKNOWLEDGMENTS
■
We thank the Natural Science Foundation of Jiangsu Province,
China (Grant BK2012823), and the Project of Priority Academic
Program Development of Jiangsu Higher Education Institutions.
2
759
dx.doi.org/10.1021/ic5000827 | Inorg. Chem. 2014, 53, 2757−2759