HASHEMI SALEHI ET AL.
5 of 6
TABLE 1 Comparison of catalytic efficiency of Pd NPs/RGO‐A. abrotanum catalyst with previous literature for the reduction of MB, RhB
and MO
Organic dye
Catalyst
kapp (s−1
)
Ref.
[26]
MB
Ni/CPM‐1 (0.5 wt% Ni, r.t.)
9.51 × 10−3
7.16 × 10−3
3.7 × 10−4
4.9 × 10−2
1.6 × 10−3
7 × 10−3
[27]
[28]
MB
Fe3O4@polydopamine (1 wt% Ag, r.t.)
NiNTAs (33 mg l−1, r.t.)
MB
MB
Pd NPs/RGO‐A. abrotanum (0.18 mmol g−1 Pd, r.t.)
PVP‐Au/PVPPANI/Fe2O3 (0.13 mg ml−1, r.t.)
Ag‐Fe3O4 (0.74 mg ml−1, r.t.)
This work
[29]
RhB
RhB
RhB
RhB
MO
MO
MO
MO
[30]
[26]
Ni/CPM‐1 (0.5 wt% Ni, r.t.)
7.85 × 10−3
2.2 × 10−3
4 × 10−2
Pd NPs/RGO‐A. abrotanum (0.18 mmol g−1 Pd, r.t.)
MnFe2O4@SiO2@Ag (0.24 mg ml−1, r.t.)
Fe3O4@His@Ag (0.24 mg ml−1, r.t.)
Ag‐γ‐Fe2O3@CS (0.67 wt% Ag, r.t.)
Pd NPs/RGO‐A. abrotanum (0.18 mmol g−1 Pd, r.t.)
This work
[31]
[32]
[33]
4.2 × 10−3
0.6 × 10−3
2 × 10−2
This work
Mater. Sci. Eng. C 2018, 90, 57; d) H. Veisi, S. Razeghi, P.
Mohammadi, S. Hemmati, Mater. Sci. Eng. C 2019, 97, 624; e)
H. Veisi, S. B. Moradi, A. Saljooqi, P. Safarimehr, Mater. Sci.
Eng. C 2019, 100, 445; f) H. Veisi, M. Ghorbani, S. Hemmati,
Mater. Sci. Eng. C 2019, 98, 584; g) H. Veisi, N. Hajimoradian
Nasrabadi, P. Mohammadi, Appl. Organometal. Chem. 2016,
30, 890; h) H. Veisi, P. Safarimehr, S. Hemmati, Mater. Sci.
Eng. C 2019, 96, 310; i) K. Zomorodian, H. Veisi, S. M. Mousavi,
M. Sadeghi Ataabadi, S. Yazdanpanah, J. Bagheri, A. Parvizi
Mehr, S. Hemmati, H. Veisi, Int. J. Nanomed. 2018, 13, 3965.
RhB and MO (Table 1). It can be seen that the Pd
NPs/RGO‐A. abrotanum catalyst leads to a rapid reduc-
tion reaction compared to the other catalysts considered.
4 | CONCLUSIONS
Pd NPs/RGO‐A. abrotanum can be applied as an effective
and heterogeneous nanocatalyst for reduction of various
dyes, namely MB, MO and RhB, in the presence of
NaBH4 as reducing agent.
[3] a) S. Hemmati, L. Mehrazin, H. Ghorban, S. H. Garakani, T. H.
Mobaraki, P. Mohammadi, H. Veisi, RSC Adv. 2018, 8, 21020;
b) M. Yazdankhah, H. Veisi, S. Hemmati, J. Taiwan Inst. Chem.
Eng. 2018, 91, 38.
ACKNOWLEDGEMENTS
[4] A. H. Qusti, R. M. Mohamed, M. A. Salam, Ceram. Int. 2014,
40, 5539.
The authors gratefully acknowledge the financial and
other support of this research provided by Tehran Medi-
cal Sciences, IslamicAzad University and Yadegar‐e‐
Imam Khomeini (RAH) Shahr‐e‐Rey Branch, Islamic
Azad University, Tehran, Iran.
[5] M. Ebrahimi, A. Zakery, M. Karimipour, M. Molaei, Opt.
Mater. 2016, 57, 46.
[6] a) H. Veisi, M. Kavian, M. Hekmati, S. Hemmati, Polyhedron
2019, 161, 338; b) S. Hemmati, L. Mehrazin, M. Pirhayati, H.
Veisi, Polyhedron 2019, 158, 414.
[7] H. Veisi, N. Mirzaee, Appl. Organometal. Chem. 2018, 32,
ORCID
e4067.
Mohammad Yousefi
[8] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc.
Rev. 2010, 39, 228.
[9] L. Liu, H. Bai, J. Liu, D. D. Sun, J. Hazard. Mater. 2013, 261, 214.
[10] J. M. Lee, I. Y. Kim, S. Y. Han, T. W. Kim, S.‐J. Hwang, Chem.
Eur. J. 2012, 18, 13800.
REFERENCES
[11] Y. Han, Z. Luo, L. Yuwen, J. Tian, X. Zhu, L. Wang, Appl. Surf.
Sci. 2013, 266, 188.
[1] M. Nasrollahzadeh, M. Atarod, S. M. Sajadi, Appl. Surf. Sci.
2016, 364, 636.
[12] F. I. Hai, K. Yamamoto, K. Fukushi, Crit. Rev. Environ. Sci.
Technol. 2007, 37, 315.
[2] a) S. Hemmati, A. Rashtiani, M. M. Zangeneh, P. Mohammadi,
A. Zangeneh, H. Veisi, Polyhedron 2019, 158, 8; b) G. Shaham,
H. Veisi, M. Hekmati, Appl. Organometal. Chem. 2017, 31,
e3737; c) M. Shahriary, H. Veisi, M. Hekmati, S. Hemmati,
[13] V. K. Gupta, J. Environ. Manage. 2009, 90, 2313.
[14] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard.
Mater. 2010, 177, 70.