Genetic Determinants of an Insecticide
ticidal activity in the course of co-evolution with insects 14. Toledo, J., Liedo, P., Williams, T., and Ibarra, J. (1999) J. Econ. Entomol. 92,
1
052–1056
through a host-parasite relationship. Circumstantial evidence
seems to lend support this opinion. Most of the genes encoding
toxins in B. thuringiensis are plasmid-borne and are generally
structurally associated with mobile elements (4, 47). This work
showed that the 110-kb plasmid pBMB0558 harbored a thu
1
5. Tamez-Guerra, P., Iracheta, M. M., Pereyra-Alf e´ rez, B., Gal a´ n-Wong, L. J.,
Gomez-Flores, R., Tamez-Guerra, R. S., and Rodr ´ı quez-Padilla, C. (2004)
J. Invertebr. Pathol. 86, 7–18
1
6. Tsuchiya, S., Kasaishi, Y., Harada, H., Ichimatsu, T., Saitoh, H., Mizuki, E.,
and Ohba, M. (2002) J. Invertebr. Pathol. 81, 122–126
cluster and a 67-kb DNA fragment related to mobile genetic 17. Kalvoda, L., Prystag, M., and Sorm, F. (1973) Tetrahedron. Lett. 41,
4
671–4674
elements. The ACP involved in the biosynthesis of thuringien-
sin is a hybrid of that seen in NRRP and PKS antibiotic synthesis
systems. Therefore, it could be predicted that these endogenous
plasmids were acquired by horizontal gene transfer, represent a
unique genetic resource, and are part of an accessory and/or
1
1
8. Sebesta, K., and Horsk a´ , K. (1970) Biochim. Biophys. Acta. 209, 357–376
9. Espinasse, S., Gohar, M., Lereclus, D., and Sanchis, V. (2002) J. Bacteriol.
1
84, 5848–5854
2
0. Liu, X., Peng, D., Luo, Y., Ruan, L., Yu, Z., and Sun, M. (2009) Appl.
Microbiol. Biotechnol. 82, 765–772
adaptive gene pool. They might play an important role in the 21. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A
biology and evolution of their host cells.
Laboratory Manual, 2nd Ed., pp. 474–491, Cold Spring Harbor Labora-
tory, Cold Spring Harbor, NY
The endogenous plasmids of bacteria, as a unique format,
harbor attractive genetic elements, which could confer special
phenotypes to a host. Nevertheless, direct cloning of large
molecular weight native plasmids is still a worldwide problem,
particularly for endogenous plasmids. We established a novel
2
2
2. Ewing, B., and Green, P. (1998) Genome Res. 8, 186–194
3. Liu, Z., Huang, L., Dai, M., Chen, D., Wang, Y., Tao, Y., and Yuan, Z. (2008)
Rapid Commun. Mass. Spectrom. 22, 1009–1016
2
4. Ji, F., Zhu, Y., Ju, S., Zhang, R., Yu, Z., and Sun, M. (2009) FEMS Microbiol.
Lett. 300, 11–17
strategy for cloning large endogenous plasmids. The identified 25. Gonz a´ lez, J. M., Jr., Brown, B. J., and Carlton, B. C. (1982) Proc. Natl. Acad.
Sci. U.S.A. 79, 6951–6955
gene on the target plasmid could act as a probe to isolate all of
the target clones from a genomic library, after which the full
sequence of plasmid is relatively simple to obtain. We adapted
this strategy to isolate novel genes responsible for a bioactive
substance carried on a plasmid (48).
2
2
6. Arantes, O., and Lereclus, D. (1991) Gene 108, 115–119
7. Tsai, S. F., Yang, C., Wang, S. C., Wang, J. S., Hwang, J. S., and Ho, S. P.
(
2004) Toxicol. Appl. Pharmacol. 194, 34–40
2
2
8. Tsai, S. F., Yang, C., Liu, B. L., Hwang, J. S., and Ho, S. P. (2006) Toxicol.
Appl. Pharmacol. 216, 347–353
9. Finking, R., and Marahiel, M. A. (2004) Annu. Rev. Microbiol. 58, 453–488
Acknowledgments—We thank the National Reference Laboratory 30. Chan, Y. A., Podevels, A. M., Kevany, B. M., and Thomas, M. G. (2009)
(
Huazhong Agricultural University) for the test of veterinary drug
Nat. Prod. Rep. 26, 90–114
3
1. Engel, H. J., Domschke, W., Alberti, M., and Domagk, G. F. (1969) Bio-
chim. Biophys. Acta 191, 509–516
residues and the Wuhan Institute of Physics and Mathematics (Chi-
nese Academy of Sciences) for the LCMS-IT-TOF tests.
3
3
2. Glaser, L., and Brown, D. H. (1955) J. Biol. Chem. 216, 67–79
3. Miclet, E., Stoven, V., Michels, P. A., Opperdoes, F. R., Lallemand, J. Y., and
Duffieux, F. (2001) J. Biol. Chem. 276, 34840–34846
4. Cohen, S. S. (1951) J. Biol. Chem. 189, 617–628
REFERENCES
3
3
3
1
2
3
4
. Sudakin, D. L. (2003) Toxicol. Rev. 22, 83–90
5. Sable, H. Z., and Guarino, A. J. (1952) J. Biol. Chem. 196, 395–402
6. Axelrod, J., Kalckar, H. M., Maxwell, E. S., and Strominger, J. L. (1957)
J. Biol. Chem. 224, 79–90
. Aronson, A. I., Beckman, W., and Dunn, P. (1986) Microbiol. Rev. 50, 1–24
. H o¨ fte, H., and Whiteley, H. R. (1989) Microbiol. Rev. 53, 242–255
. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J.,
Zeigler, D. R., and Dean, D. H. (1998) Microbiol. Mol. Biol. Rev. 62,
3
3
3
7. Kalckar, H. M., Maxwell, E. S., and Strominger, J. L. (1956) Arch. Biochem.
Biophys. 65, 2–10
7
75–806
8. Coutinho, P. M., Deleury, E., Davies, G. J., and Henrissat, B. (2003) J. Mol.
Biol. 328, 307–317
5
6
7
. Waalwijk, C., Dullemans, A. M., van Workum, M. E., and Visser, B. (1985)
Nucleic Acids. Res. 13, 8207–8217
9. Oriol, R., Martinez-Duncker, I., Chantret, I., Mollicone, R., and Codogno,
P. (2002) Mol. Biol. Evol. 19, 1451–1463
. Estruch, J. J., Warren, G. W., Mullins, M. A., Nye, G. J., Craig, J. A., and
Koziel, M. G. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 5389–5394
. Donovan, W. P., Engleman, J. T., Donovan, J. C., Baum, J. A., Bunkers, G. J.,
Chi, D. J., Clinton, W. P., English, L., Heck, G. R., Ilagan, O. M., Krasomil-
Osterfeld, K. C., Pitkin, J. W., Roberts, J. K., and Walters, M. R. (2006) Appl.
Microbiol. Biotechnol. 72, 713–719
4
4
4
0. Breton, C., and Imberty, A. (1999) Curr. Opin. Struct. Biol. 9, 563–571
1. Løbner-Olesen, A., and Marinus, M. G. (1992) J. Bacteriol. 174, 525–529
2. Cheng, W. C., Chang, Y. N., and Wang, W. C. (2005) J. Bacteriol. 187,
8
156–8163
4
4
3. Peng, D., Luo, Y., Guo, S., Zeng, H., Ju, S., Yu, Z., and Sun, M. (2009) J. Appl.
Microbiol. 106, 1849–1858
8
. Levinson, B. L., Kasyan, K. J., Chiu, S. S., Currier, T. C., and Gonz a´ lez, J. M.,
Jr. (1990) J. Bacteriol. 172, 3172–3179
4. Fischbach, M. A., and Walsh, C. T. (2006) Chem. Rev. 106, 3468–3496
9
. Stabb, E. V., Jacobson, L. M., and Handelsman, J. (1994) Appl. Environ.
Microbiol. 60, 4404–4412
45. Grynberg, M., Li, Z., Szczurek, E., and Godzik, A. (2007) Trends Microbiol.
15, 191–195
1
1
0. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus,
D., Baum, J., and Dean, D. H. (1998) Microbiol. Mol. Biol. Rev. 62, 807–813 46. Draper, O., Middleton, R., Doucleff, M., and Zambryski, P. C. (2006) J. Biol.
1. Wirth, M. C., Walton, W. E., and Federici, B. A. (2010) Environ. Microbiol.
2, 1154–1160
2. Ohba, M., Mizuki, E., and Uemori, A. (2009) Anticancer. Res. 29, 427–433
Chem. 281, 37628–37635
1
47. Mahillon, J., and Chandler, M. (1998) Microbiol. Mol. Biol. Rev. 62,
1
1
725–774
3. Song, L., Gao, M., Dai, S., Wu, Y., Yi, D., and Li, R. (2008) J. Invertebr. 48. Guo, S., Liu, M., Peng, D., Ji, S., Wang, P., Yu, Z., and Sun, M. (2008) Appl.
Pathol. 98, 169–176
Environ. Microbiol. 74, 6997–7001
3
9200 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 50•DECEMBER 10, 2010