Chemistry - A European Journal
10.1002/chem.201801173
FULL PAPER
0
42U16), is gratefully acknowledged. We are also indebted to P.
vacuum grease, mounted on a glass fiber and transferred to a Bruker
SMART APEX CCD-based diffractometer equipped with a graphite
monochromated Mo-Kα radiation source ( = 0.71073 Å). The highly
Castroviejo and M. Mansilla, from PCI of the University of Burgos, for
technical support.
[
54]
redundant datasets were integrated using SAINT
and corrected for
Keywords: Biscyclometalated Iridium(III) Complexes • Oxygen
photosensitizers • Photocatalysis • Singlet Oxygen • Sulphides
photooxidation.
Lorentz and polarization effects. The absorption correction was based on
the function fitting to the empirical transmission surface as sampled by
[
55]
multiple equivalent measurements with the program SADABS.
The
[
56]
software package WINGX was used for space group determination,
[1]
J. Twilton, C. C. (Chip) Le, P. Zhang, M. H. Shaw, R. W. Evans, D.
W. C. MacMillan, Nat. Rev. Chem. 2017, 1, 52.
T. Neveselý, E. Svobodová, J. Chudoba, M. Sikorski, R. Cibulka,
Adv. Synth. Catal. 2016, 358, 1654–1663.
structure solution, and refinement by full-matrix least-squares methods
[
[
2]
3]
2
based on F . A successful solution by direct methods provided most non-
M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81,
hydrogen atoms from the E-map. The remaining non-hydrogen atoms
were located in an alternating series of least-squares cycles and
difference Fourier maps. All non-hydrogen atoms were refined with
anisotropic displacement coefficients. Hydrogen atoms were placed
using a “riding model” and included in the refinement at calculated
positions. CCDC reference number for [1]Cl is 1825414.
6
898–6926.
L. Huang, J. Zhao, S. Guo, C. Zhang, J. Ma, J. Org. Chem. 2013, 78,
627–5637.
[4]
5
[
5]
M. S. Baptista, J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M.
R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas,
et al., Photochem. Photobiol. 2017, 93, 912–919.
N. Iqbal, S. Choi, Y. You, E. J. Cho, Tetrahedron Lett. 2013, 54,
6222–6225.
T. L. Lam, J. Lai, R. R. Annapureddy, M. Xue, C. Yang, Y. Guan, P.
Zhou, S. L.-F. Chan, Inorg. Chem. 2017, 56, 10835–10839.
O. Hamelin, P. Guillo, F. Loiseau, M. F. Boissonnet, S. Ménage,
Inorg. Chem. 2011, 50, 7952–7954.
J. Dad’ová, E. Svobodová, M. Sikorski, B. König, R. Cibulka,
ChemCatChem 2012, 4, 620–623.
B. Kasprzyk-Hordern, Chem. Soc. Rev. 2010, 39, 4466.
A. Guerrero-Corella, A. María Martinez-Gualda, F. Ahmadi, E. Ming,
A. Fraile, J. Alemán, Chem. Commun. 2017, 53, 10463–10466.
I. Fernández, N. Khiar, Chem. Rev. 2003, 103, 3651–3705.
J. Legros, J. R. Dehli, C. Bolm, Adv. Synth. Catal. 2005, 347, 19–31.
X. Gu, X. Li, Y. Chai, Q. Yang, P. Li, Y. Yao, Green Chem. 2013, 15,
357.
C. Ye, Y. Zhang, A. Ding, Y. Hu, H. Guo, Sci. Rep. 2018, 8, 2205.
A. Casado-Sánchez, R. Gómez-Ballesteros, F. Tato, F. J. Soriano,
G. Pascual-Coca, S. Cabrera, J. Alemán, Chem. Commun. 2016, 52,
9137–9140.
[
[
6]
7]
Electrochemical measurements
[8]
9]
Electrochemical measurements were performed using
Bipotentiostat STAT 300 (DropSens) equipment controlled by DropView
DropSens). All experiments were carried out using a three-electrode cell
a portable
[
(
[10]
11]
[
using a glassy-carbon disk with a diameter of 3 mm as the working
electrode, a platinum wire as the auxiliary electrode, and a RE-5B
Ag/AgCl (BASi) reference electrode. Oxygen was removed from the
solution by bubbling argon for 10 min and keeping the argon atmosphere
along the whole experiment. The formal potentials were determined by
[12]
[
[
13]
14]
[
[
15]
16]
−
1
cyclic voltammetry (CV), at a scan rate of 100 mV s . All potentials were
referred to ferrocene as internal standard. All voltammetric experiments
were started and finished at a potential of −0.46 V and performed in a
[
[
17]
18]
D. Chao, M. Zhao, ChemSusChem 2017, 10, 3358–3362.
H.-J. Xu, Y.-C. Lin, X. Wan, C.-Y. Yang, Y.-S. Feng, Tetrahedron
2010, 66, 8823–8827.
−
3
clockwise direction. Acetonitrile solutions of the complexes (10 M) were
n
[19]
W. Li, Z. Xie, X. Jing, Catal. Commun. 2011, 16, 94–97.
A. Hassan, S. R. Breeze, S. Courtenay, C. Deslippe, S. Wang,
Organometallics 1996, 15, 5613–5621.
used in the presence of 0.1 M [ Bu
4
N][PF
6
] as supporting electrolyte.
[
20]
[
21]
S. Fakih, W. C. Tung, D. Eierhoff, C. Mock, B. Krebs, Zeitschrift für
Anorg. und Allg. Chemie 2005, 631, 1397–1402.
B. Antonioli, D. J. Bray, J. K. Clegg, K. Gloe, K. Gloe, O. Kataeva, L.
F. Lindoy, J. C. McMurtrie, P. J. Steel, C. J. Sumby, et al., Dalton
Trans. 2006, 4783–4794.
A. J. Swarts, S. F. Mapolie, Dalton Trans. 2014, 43, 9892–9900.
A. J. Swarts, F. Zheng, V. J. Smith, E. Nordlander, S. F. Mapolie,
Organometallics 2014, 33, 2247–2256.
S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem.
Soc. 1984, 106, 6647–6653.
General procedure for photocatalytic oxidation
In a septum-capped tube we added the corresponding sulphide or L-
[22]
aminoacid (5 mol in solution of [D
0.005 or 0.05 mol in solution of [D
O, obtaining the mixture [D ]DMSO/D
providing the desired final concentration of substrate, 10 mM. The
system was purged with O or N until atmosphere saturation and
6
]DMSO), the Ir(III) catalyst [1]Cl-[4]Cl
]DMSO), and additional DMSO and
(0.5 mL; 3:2 v/v) and
(
6
[
[
23]
24]
D
2
6
2
O
[
[
[
25]
26]
27]
2
2
M. C. Tseng, W. L. Su, Y. C. Yu, S. P. Wang, W. L. Huang,
Inorganica Chim. Acta 2006, 359, 4144–4148.
irradiated with Blue LED light (= 460 nm, 24W) or CFL lamp at room
M. Martínez-Alonso, J. Cerdá, C. Momblona, A. Pertegás, J. M.
Junquera-Hernández, A. Heras, A. M. Rodríguez, G. Espino, H.
Bolink, E. Ortí, Inorg. Chem. 2017, 56, 10298–10310.
E. Baranoff, B. F. E. Curchod, J. Frey, R. Scopelliti, F. Kessler, I.
Tavernelli, U. Rothlisberger, M. Grätzel, M. K. Nazeeruddin, M.
Gratzel, et al., Inorg. Chem. 2012, 51, 215–224.
temperature during 12 h. The yield values for sulfoxides were calculated
1
by H NMR integration from the crude mixture when the reaction was
[
28]
done in deuterated solvents. Alternatively, when the reactions were
performed in non-deuterated solvents an aliquot of the crude solution
[
[
[
29]
30]
31]
K. S. Bejoymohandas, T. M. George, S. Bhattacharya, S. Natarajan,
M. L. P. Reddy, J. Mater. Chem. C 2014, 2, 515–523.
H. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo, H.
Yang, G. Jenkins, Q. Zhao, et al., Nat. Commun. 2014, 5, 3601.
G. E. Schneider, H. J. Bolink, E. C. Constable, C. D. Ertl, C. E.
Housecroft, A. Pertegas, J. A. Zampese, A. Kanitz, F. Kessler, S. B.
Meier, Dalton Trans. 2014, 43, 1961–1964.
(
6
100 μL) was added to 400 μL of [D ]DMSO, and the yield values for
1
sulfoxides were calculated by H NMR integration.
Acknowledgements
[
[
32]
33]
A. Maity, L. Q. Le, Z. Zhu, J. Bao, T. S. Teets, Inorg. Chem. 2016,
55, 2299–2308.
Dr. M. Vaquero is grateful for the financial support received from the
Consejería de Educación-Junta de Castilla y León (BU042U16).
Financial support by the Spanish Ministry of Economy and
E. Baranoff, B. F. E. Curchod, Dalton Trans. 2015, 44, 8318–8329.
W. Lin, Q. Zhao, H. Sun, K. Y. Zhang, H. Yang, Q. Yu, X. Zhou, S.
Guo, S. Liu, W. Huang, Adv. Opt. Mater. 2015, 3, 368–375.
H. Cao, H. Sun, Y. Yin, X. Wen, G. Shan, Z. Su, R. Zhong, W. Xie,
P. Li, D. Zhu, J. Mater. Chem. C 2014, 2, 2150–2159.
[34]
[35]
[36]
Competitiveness
CTQ2014-58812-C2-2-R, CTQ2015-70371-REDT, FEDER funds), Obra
Social “la Caixa” (OSLC-2012-007), Junta de Castilla y León (BU-
(MINECO)
(projects
CTQ2014-58812-C2-1-R,
(
G. E. Schneider, A. Pertegás, E. C. Constable, C. E. Housecroft, N.
This article is protected by copyright. All rights reserved.