optical and electrical properties of the ligands are conserved in
the metal-assembled state 2a which shows a fluorescence
quantum yield of almost unity and multiple, fully reversible
redox couples. The giant inner volume of nanosquares 2 seems
ideal to accommodate large functional guest molecules for
studies on redox and photocatalytic processes.
We thank Dr Peter Weber (Scripps, La Jolla) for ESI mass
spectrometry and helpful discussions. We gratefully acknowl-
edge the Fonds der Chemischen Industrie, the BMBF, the DFG
and the Ulmer Universitätsgesellschaft for financial support, the
BASF AG and Degussa-Hüls AG for the donation of chem-
icals.
Fig. 1 Cyclic voltammogram of perylene–platinum square 2a in CH2Cl2;
scan rate 100 mV s–1. Working electrode: Pt disc, auxiliary electrode: Pt
wire, reference electrode: Ag/AgCl; concentration 2a = 2.5 3 10–4 M;
supporting electrolyte NBu4PF6 (0.1 M).
Notes and references
† Selected data for 2a: mp > 330 °C. 1H NMR (CDCl3, 500 MHz), d 9.13
(br s, 16H), 8.12 (s, 16H), 7.69 (br s, 32H), 7.40 (m, 32H), 7.32 (m, 16H),
7.20 (d, 32H, J 8.4 Hz), 7.09 (d, 16H, J 5.9 Hz), 6.77 (d, 32H, J 8.4 Hz), 3.29
(br s, 16H), 2.20 br s, 8H), 1.24 (s, 144H). 31P{1H} NMR (CDCl3, 85%
H3PO4, 202 MHz), d 215.11 (s). UV–VIS(CH2Cl2), l (e) 591 (217000),
550 (135000), 459 nm (72000 dm3 mol21 cm21). lem, max(CH2Cl2) 625 nm.
MS (ESI, acetone) Calc. (M23OTf)3+ m/z 2575.7. Found 2575.0. Found: C,
59.29; H, 4.59; N, 2.54; S, 3.03. C412H360N16O56F24P8Pt4S8·8H2O requires
C, 59.50; H, 4.56; N, 2.69; S, 3.08%.
1 J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995; D.
Philp and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, 35, 1154;
Comprehensive Supramolecular Chemistry, ed. J. M. Lehn, J. L.
Atwood, J. E. D. Davies, D. D. MacNicol and F. Vögtle, Pergamon,
Oxford, 1996, vol. 1–11.
2 G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-
Lawless, M. Z. Papiz, R. J. Cogdell and N. W. Isaacs, Nature, 1995, 374,
517; X. Hu and K. Schulten, Phys. Today, 1997, 28.
3 M. Fujita and K. Ogura, Bull. Chem. Soc. Jpn., 1996, 69, 1471.
4 P. J. Stang and B. Olenyuk, Acc. Chem. Res., 1997, 30, 502.
5 J. Fan, J. A. Whiteford, B. Olenyuk, M. D. Levin, P. J. Stang and E. B.
Fleischer, J. Am. Chem. Soc., 1999, 121, 2741; C. M. Drain and J. M.
Lehn, J. Chem. Soc., Chem. Commun., 1994, 2313; R. V. Slone and J. T.
Hupp, Inorg. Chem., 1997, 36, 5422; C. M. Drain, F. Nifiatis, A.
Vasenko and J. D. Batteas, Angew. Chem., Int. Ed., 1998, 37, 2344.
6 G. Seybold and G. Wagenblast, Dyes Pigments, 1989, 11, 303; R.
Gvishi and B. Reisfeld, Chem. Phys. Lett., 1993, 213, 338.
7 D. Dotcheva, M. Klapper and K. Müllen, Macromol. Chem. Phys.,
1994, 195, 1905; F. Würthner, C. Thalacker and A. Sautter, Adv. Mater.,
1999, 11, 754.
Fig. 2 Spectroelectrograms of perylene–platinum square 2a in CH2Cl2 with
NBu4PF6 (0.1 M) as supporting electrolyte. Working electrode: Pt disc;
auxiliary electrode: Pt wire; reference electrode: Ag/AgCl; concentration 2a
= 1.4 3 1024 M. Stepwise increase of the applied potential to radical
anionic perylene species (a) and to dianionic perylene species (b).
wave of 2a (21.14 V) the perylene radical anion bands
disappear completely whereas a broad and intense band
appears, with a maximum absorption at 679 nm [Fig. 2(b)],
corresponding to dianionic perylene bisimides. Oxidation to the
radical cationic state results in less pronounced spectral changes
in the visible but new broad bands appear in the NIR at 809, 908
and 1225 nm. The distinct isosbestic points in the absorption
spectra for all redox couples confirm the reversibility of all
oxidation and reduction processes. Therefore, we conclude that
(i) the redox processes take place exclusively at the perylene
ligands with the Pt(II) corner units being inert in the applied
potential range and acting solely as structural building blocks,
(ii) the perylene ligands assembled in the square do not interact
with one another even in a charged state, and (iii) each perylene
ligand in the square is reduced and oxidized at the same time at
the given potentials.12
8 S. K. Lee, Y. Zu, A. Herrmann, Y. Geerts, K. Müllen and A. J. Bard,
J. Am. Chem. Soc., 1999, 121, 3513.
9 Fluorescence quantum yields were determined relative to 1,6,7,12-tetra-
phenoxy-N,NA-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-tetracar-
boxylic acid bisimide (FR = 0.96, CHCl3)6 by the optically dilute
method (A 5 0.035) in chloroform; J. N. Demas and G. A. Crosby,
J. Phys. Chem., 1971, 75, 991.
10 P. J. Stang, D. H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc., 1995,
117, 6273.
11 H. Langhals, S. Demmig and H. Huber, Spectrochim. Acta, Part A,
1988, 44, 1189.
12 This conclusion is drawn from spectroelectrochemistry which shows
complete disappearance of the bands of the neutral and the radical-
anionic perylene species at the respective redox potentials.
In summary, we report on a new functional ditopic perylene
ligand 1 which has been used to construct nanosized molecular
squares 2 with Pt(II) and Pd(II) phosphine corner units. The
Communication a909892e
446
Chem. Commun., 2000, 445–446