1
862 Anderson and Hillmyer
Macromolecules, Vol. 37, No. 5, 2004
3
Å. From these values the conformational asymmetry
parameter between PLA and PEP is now 1.06. This
value is in good agreement with the symmetric phase
diagram that was observed.
(6) Bates, F. S.; Schulz, M. F.; Rosedale, J . H.; Almdal, K.
Macromolecules 1992, 25, 5547-5550.
7) Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Forster, S.;
(
Rosedale, J . H.; Almdal, K.; Mortensen, K. Faraday Discuss.
1
994, 98, 7-18.
We also experimentally obtained the morphology
(8) Almdal, K.; Koppi, K. A.; Bates, F. S.; Mortensen, K.
diagram for PS-PLA block copolymers.37 Polystyrene
Macromolecules 1992, 25, 1743-1751.
9) Schnell, R.; Stamm, M.; Creton, C. Macromolecules 1998, 31,
(
and polylactide apparently have a higher degree of
asymmetry, resulting in a shift of the experimental
morphology diagram from the idealized symmetric case.
The statistical segment length for PLA-28 at 110 °C
2
284-2292.
(
(
(
10) Cole, P. J .; Cook, R. F.; Macosko, C. W. Macromolecules 2003,
36, 2808-2815.
11) J oziasse, C. A. P.; Veenstra, H.; Grijpma, D. W.; Pennings,
A. J . Macromol. Chem. Phys. 1996, 197, 2219-2229.
12) Grijpma, D. W.; Penning, J . P.; Pennings, A. J . Colloid Polym.
Sci. 1994, 272, 1068-1081.
(
using κ) is 7.1 Å, and for PS it is 5.5 Å based on the
polyolefin reference volume at this temperature. From
these statistical segment lengths, the asymmetry pa-
rameter is 1.67. Fortuitously, Whitmore et al. calculated
what the position of the cylinder to lamellar phase
boundary would be for a block copolymer with a øN
value of 80 and an asymmetry parameter of 1.67. They
predict that the boundary will shift from 0.33 to 0.40.
Experimentally, we determined that the cylinder to
lamellar phase boundary in the intermediate to strong
segregation limit is between 0.43 and 0.44, which is in
qualitative agreement with their prediction.
(13) Kang, S.; Zhang, G.; Aou, K.; Hsu, S. L.; Stidham, H. D.;
Yang, X. J . Chem. Phys. 2003, 118, 3430-3436.
14) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R.
(
K.; Timmers, F. J . Organometallics 1996, 15, 1518-1520.
(
15) Wang,Y.;Hillmyer,M.A.Macromolecules 2000,33,7395-7403.
3
6
(16) Thakur, K. A. M.; Kean, R. T.; Hall, E. S.; Kolstad, J . J .;
Lindgren, T. A.; Doscotch, M. A.; Siepmann, J . I.; Munson,
E. J . Macromolecules 1997, 30, 2422-2428.
(
17) Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young,
V. G., J r.; Hillmyer, M. A.; Tolman, W. B. J . Am. Chem. Soc.
2
003, 125, 11350-11359.
(18) Bates, F. S.; Fetters, L. J .; Wignall, G. D. Macromolecules
1
988, 21, 1086-1094.
Con clu sion s
(19) Weimann, P. A.; J ones, T. D.; Hillmyer, M. A.; Bates, F. S.;
Londono, J . D.; Melnichenko, Y.; Wignall, G. D.; Almadal,
K. Macromolecules 1997, 30, 3650-3657.
The melt chain dimensions of two polylactide samples
were investigated using small-angle neutron scattering.
The statistical segment lengths were determined to be
0.0 ( 0.2 Å for PLA-28 at 30 °C, 8.9 ( 0.2 Å for PLA-
8 at 200 °C, and 9.9 ( 0.4 Å for PLA-0 at 200 °C based
on a C6 repeating unit. The chain dimensions were
found to decrease with both increasing temperature and
increasing D content. On the basis of its statistical
segment length, the characteristic ratio of PLA-28 at
(20) J amshidi, K.; Hyon, S.-H.; Ikada, Y. Polymer 1988, 29, 2229-
2
234. The procedure for end-capping is not the same as that
used in this study; however, the effect that end-capping has
on the transesterification of polylactide is discussed. In
addition, an experiment was performed where end-capped
polylactide was placed in a vacuum oven at 200 °C for 2 h
and no broadening of the polydispersity was observed,
indicating insignificant transesterification.
1
2
(
21) Bates, F. S.; Wignall, G. D.; Koehler, W. C. Phys. Rev. Lett.
1
985, 55, 2425-2428.
3
0 °C was calculated to be 8.4, which is in general
(22) de Gennes, P. G. Scaling Concepts in Polymer Physics, Cornell
agreement with other values reported in the literature
for polylactides with similar D contents. However, the
characteristic ratio of PLA-0 at 30 °C was found to be
somewhat smaller than other reported values for iso-
tactic PLLA. Finally, we calculated the conformational
asymmetry parameters for both PEP-PLA and PS-
PLA block copolymer systems based on the experimen-
tally determined chain dimensions for polylactide and
found them to be in agreement with the experimentally
determined morphology diagrams.
University Press: Ithaca, NY, 1979.
23) Higgins, J .; Benoit, H. Polymers and Neutron Scattering;
Oxford University Press: Oxford, UK, 1994.
(
(
24) Calculated from the density of polylactide and the repeat unit
molecular weight. The density at room temperature was
taken to be 1.248 g/cm3 (see: Grijpma, D. W.; Penning, J . P.;
Pennings, A. J . Colloid Polym. Sci. 1994, 272, 1068-1081).
3
The density at 200 °C was taken to be 1.104 g/cm (see:
Witzke, D. R.; Narayan, R.; Kolstad, J . J . Macromolecules
1
997, 30, 7075-7085).
(25) J ones, T. D.; Chaffin, K. A.; Bates, F. S.; Annis, B. K.;
Hagaman, M. K.; Kim, M. H.; Wignall, G. D.; Fan, W.;
Waymouth, R. Macromolecules 2002, 35, 5061-5068.
(
26) Flory, P. J . Statistical Mechanics of Chain Molecules; Inter-
science: New York, 1969.
Ack n ow led gm en t. We acknowledge the support of
the National Institute of Standards and Technology,
U.S. Department of Commerce, in providing the neutron
research facilities used in this work. The authors also
thank Professors Timothy Lodge and Frank Bates for
helpful input during the preparation of this manuscript.
The David and Lucille Packard Foundation is acknowl-
edged for financial support of this work.
(
27) Fetters, L. J .; Lohse, D. J .; Graessley, W. W. J . Polym. Sci.,
Part B: Polym. Phys. 1999, 37, 1023-1033.
(28) Tonelli, A. E.; Flory, P. J . Macromolecules 1969, 2, 225-227.
(
29) Ren, J .; Urakawa, O.; Adachi, K. Macromolecules 2003, 36,
2
10-219.
(
30) Owens, J . N.; Gancarz, I. S.; Koberstein, J . T.; Russell, T. P.
Macromolecules 1989, 22, 3380-3387.
(31) The value for the statistical segment length of PLA-28 at 200
°
C based on the polyolefin reference volume is 6.7 Å and for
Su p p or tin g In for m a tion Ava ila ble: Size exclusion chro-
matographs of all polymers used, coherent scattering data,
intermediate q-range analysis, Kratky plateau determination,
effect of sample degradation on data analysis, and comparison
of stereosequence distribution in polylactide. This material is
available free of charge via the Internet at http://pubs.acs.org.
PLA-0 at 200 °C it is 7.5 Å.
(32) Gehlsen, M. D.; Weimann, P. A.; Bates, F. S.; Harville, S.;
Mays, J . W.; Wignall, G. D. J . Polym. Sci., Part B: Polym.
Phys. 1995, 33, 1527-1536.
(
33) Krishnamoorti, R.; Graessley, W. W.; Zirkel, A.; Richter, D.;
Hadjichristidis, N.; Fetters, L. J .; Lohse, D. J . J . Polym. Sci.,
Part B: Polym. Phys. 2002, 40, 1768-1776.
(
34) Mattice, W. L.; Suter, U. W. Conformational Theory of Large
Molecules. The Rotational Isomeric State Model in Macro-
molecular Systems; Wiley: New York, 1994.
Refer en ces a n d Notes
(
1) Vert, M.; Li, S. M.; Spenlehauer, G.; Guerin, P. J . Mater.
Sci.: Mater. Med. 1992, 3, 432-446.
(
(
(
35) Schimdt, S. C.; Hillmyer, M. A. J . Polym. Sci., Part B: Polym.
Phys. 2002, 40, 2364-2376.
36) Vavasour, J . D.; Whitmore, M. D. Macromolecules 1993, 26,
(2) Tullo, A. Chem. Eng. News 2000, 78, 13.
(
3) Fetters, L. J .; Lohse, D. J .; Richter, D.; Witten, T. A.; Zirkel,
A. Macromolecules 1994, 27, 4639-4647.
7
070-7075.
37) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J . H.; Hillmyer, M. A.
(
4) Wu, S. Polym. Int. 1992, 29, 229-247.
J . Am. Chem. Soc. 2002, 124, 12761-12773.
(
5) Bates, F. S.; Fredrickson, G. H. Macromolecules 1994, 27,
1
065-1067.
MA0357523