Enantioselective Hydrogenation on Pt Nanoparticles
A R T I C L E S
the early observation of a remarkable selectivity enhancement
by a reductive treatment of supported Pt prior to the hydrogena-
enantioselectivity (97.6% ee) achieved in the same reaction using
tiny Pt nanoparticles with a narrow particle size distribution
(1.4 ( 0.2 nm).
2
4
42
tion of R-ketoesters. It was shown later that treatment of Pt/
Al in flowing hydrogen at elevated temperature doubled the
enantioselectivity, as compared to the treatment in air under
2
O
3
Here we report another approach to reduce the gap between
surface science and practical catalysis. We synthesized Pt
nanoparticles of different shapes but very similar size and tested
them in the enantioselective hydrogenation of an R-ketoester
and an R-ketolactone. The efficiency of this approach is well
documented in the study of the influence of surface morphology
of metal nanoparticles on the reaction rate and chemoselec-
2
5
otherwise identical conditions. The shift in enantioselectivity
was reversible by changing the gas atmosphere, and redispersion
of the Pt particles was evidenced by HRTEM. The effect of
heat treatment was attributed to adsorbate, i.e., hydrogen and
26
oxygen, induced restructuring, but no evidence for the change
in the surface morphology of Pt has been found. Another
4
3
tivity. The reactions include hydrogenation and dehydro-
27,28
4
4-46
46-51
efficient catalyst pretreatment method is ultrasonication,
and
genation,
oxidation and electrooxidation,
isomeriza-
5
2
53
its positive effect on the enantioselection is probably also linked
to changes in the morphology of the metal particles. In the
hydrogenation of 3,5-di(trifluoromethyl)acetophenone, the enan-
tioselectivity more than tripled after stirring the catalyst slurry
under nitrogen in the presence of cinchonidine or quinoline prior
tion, and oxygen reduction. Since our focus is on the role
of surface morphology in enantioselection, we choose a method
that provides relatively big particles of ∼10 nm with a narrow
5
4
particle size distribution. Thus, the effect of particle size can
be eliminated and the observed differences in enantioselectivity
can be unambiguously correlated with the surface morphology
of Pt.
29
to the reaction. Catalyst restructuring due to reactive adsorption
of the heteroaromatic compounds was confirmed by electron
microscopy, but no correlation between surface morphology and
enantioselectivity could be derived.
2. Experimental Section
30
The structure sensitivity of heterogeneous catalytic reactions
is commonly investigated by varying the size of the metal
2
.1. Materials. Pt colloids with a controlled shape have been
3
1-34
synthesized by reduction of an aqueous solution of K PtCl (Aldrich,
9.9+%) with H (PanGas, 5.0), according to a method described
2
4
particles in the range 1-20 nm.
The biggest changes of
9
2
54
proportions between the high- and low-coordinated surface sites
occur between 1 and 5 nm. There are numerous reports on
the structure sensitivity of hydrogenations on chirally modified
in the literature. Different Pt particle shape distributions were
achieved by varying the concentration of the colloid stabilizer
3
5
poly(acrylic acid) (PAA, Aldrich, M ) 2100). The preparation
W
1,4,36-38
Pt-group metals and Ni,
For example, it was earlier described that in the hydrogenation
of pyruvate esters on cinchonidine-(CD)-modified Pt/Al the
rate and enantioselectivity increased with increasing Pt particle
but the results are contradictory.
of the samples Pt-1, Pt-2, and Pt-3 was conducted at Pt:PAA molar
ratios of 1:1, 1:3, and 1:5, respectively.
2
O
3
2 2 2
For the preparation of Pt-1/SiO , Pt-2/SiO , and Pt-3/SiO , a
suspension of SiO (Degussa, Aerosil 200) in water was prepared
2
3
9
size up to 3-4 nm. A feasible explanation for the poor
enantioselectivity characteristic of metal particles below 2 nm
by sonification and added to the Pt colloidal solution. After stirring
for 1 h the colloids were deposited onto silica by dropwise
acidification until pH ) 2 (0.1 M HCl). The samples containing 5
wt % Pt were filtered off, washed with water (10 times) to remove
excess PAA, and dried overnight at 60 °C and 10 mbar. Silica was
chosen as the support because of the superior resolution of the TEM
4
0,41
is a geometric effect:
the small particles cannot accom-
modate the bulky modifier-substrate complex that occupies
9
2
0-25 surface atoms, and the nonmodified reaction leads to a
racemic product. But this concept is in contrast to the excellent
pictures, compared to Al
was divided into two fractions and deposited onto SiO
Degussa, Aluminum oxide C) to allow a direct comparison to the
commercial catalyst Pt/Al (Engelhard 4759), which was chosen
2
O
3
. One colloidal solution (sample Pt-1)
2
and Al
2 3
O
(
(
(
24) Orito, Y.; Imai, S.; Niwa, S. J. Chem. Soc. Jpn. 1979, 1118–1120.
25) Mallat, T.; Frauchiger, S.; Kooyman, P. J.; Sch u¨ rch, M.; Baiker, A.
Catal. Lett. 1999, 63, 121–126.
2 3
O
(
(
(
(
26) Somorjai, G. A.; Park, J. Y. Angew. Chem., Int. Ed. 2008, 47, 9212–
9
228.
(42) Zuo, X.; Liu, H.; Liu, M. Tetrahedron Lett. 1998, 39, 1941–1944.
(43) Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chem. ReV.
2005, 105, 1025–1102.
27) T o¨ r o¨ k, B.; Felf o¨ ldi, K.; Szakonyi, G.; Bal a´ zsik, K.; Bart o´ k, M. Catal.
Lett. 1998, 52, 81–84.
28) T o¨ r o¨ k, B.; Bal a´ zsik, K.; Felf o¨ ldi, K.; Bart o´ k, M. Ultrason. Sonochem.
(44) Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.;
Yang, P. Angew. Chem., Int. Ed. 2006, 45, 7824–7828.
(45) Somorjai, G. A.; Park, J. Y. J. Chem. Phys. 2008, 128, 182504-
11824504-9.
2
001, 8, 191–200.
29) Hess, R.; Krumeich, F.; Mallat, T.; Baiker, A. Catal. Lett. 2004, 92,
1
41–148.
(
(
(
(
30) Boudart, M. AdV. Catal. 1969, 20, 153–166.
(46) Serrano-Ruiz, J. C.; L o´ pez-Cudero, A.; Solla-Gull o´ n, J.; Sep u´ lveda-
Escribano, A.; Aldaz, A.; Rodr ´ı guez-Reinoso, F. J. Catal. 2008, 253,
159–166.
31) Che, M.; Bennett, C. O. AdV. Catal. 1989, 36, 55–172.
32) Coq, B.; Figueras, F. Coord. Chem. ReV. 1998, 180, 1753–1783.
33) Guczi, L.; Petö, G.; Beck, A.; Pászti, Z. Top. Catal. 2004, 29, 129–
(47) Vidal-Iglesias, F. J.; Solla-Gullon, J.; Rodriguez, P.; Herrero, E.;
Montiel, V.; Feliu, J. M.; Aldaz, A. Electrochem. Commun. 2004, 6,
1080–1084.
1
38.
(
(
(
34) VanSanten, R. A. Acc. Chem. Res. 2009, 42, 57–66.
35) VanHardeveld, R.; Hartog, F. Surf. Sci. 1969, 15, 189–230.
(48) Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Chem.sAsian J. 2006,
1, 888–893.
36) B o¨ nnemann, H.; Braun, G. A. Angew. Chem., Int. Ed. Engl. 1996,
3
5, 1992–1995.
37) Zuo, X.; Liu, H.; Guo, D.; Yang, X. Tetrahedron 1999, 55, 7787–
804.
38) Nitta, Y.; Kubota, T.; Okamoto, Y. Bull. Chem. Soc. Jpn. 2000, 73,
635–2641.
39) Wehrli, J. T.; Baiker, A.; Monti, M.; Blaser, H. U. J. Mol. Catal.
990, 61, 207–226.
(49) Park, K. H.; Jang, K.; Kim, H. J.; Son, S. U. Angew. Chem., Int. Ed.
2007, 46, 1152–1155.
(
(
(
(
7
(50) Subhramannia, M.; Pillai, V. K. J. Mater. Chem. 2008, 18, 5858–
5870.
2
(51) Solla-Gullon, J.; Vidal-Iglesias, F. J.; Lopez-Cudero, A.; Garnier, E.;
Feliu, J. M.; Aldaza, A. Phys. Chem. Chem. Phys. 2008, 10, 3689–
3698.
1
40) Jackson, S. D.; Keegan, M. B. T.; McLellan, G. D. ; Meheux, P. A.;
Moyes, R. B.; Webb, G.; Wells, P. B.; Whyman, R.; Willis, J. In
Studies in Surface Science and Catalysis; Poncelet, G., Jacobs, P. A.,
Grange, G., Delmon, B., Eds.; Elsevier: Amsterdam, 1991; p 135.
41) Hoxha, F.; Vegten, N. V.; Urakawa, A.; Krumeich, F.; Mallat, T.;
Baiker, A. J. Catal. 2009, 261, 224–231.
(52) Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Nat. Mater.
2009, 8, 132–138.
(53) Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. Angew. Chem.,
Int. Ed. 2008, 47, 3588–3591.
(
(54) Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed,
M. A. Science 1996, 272, 1924–1926.
J. AM. CHEM. SOC. 9 VOL. 131, NO. 34, 2009 12359