10.1002/anie.201900869
Angewandte Chemie International Edition
COMMUNICATION
Tomás, I. Marques, P. J. Costa, V. Félix, P. A. Gale, Chem. Sci. 2013,
4, 103‒117.
In conclusion, we developed an o-nitrobenzyl (ONB) protected
N-aryl-1H-indole-2-carboxamide procarrier that features efficient
activation of membrane transport by cleaving its photolabile
protecting group. The ONB protected procarrier with p-CF3-
phenyl as the aryl group was inactive while the free carboxamide
was an efficient carrier of ion giving EC50 = 0.219 µM and Hill
coefficient, n = 1.88 when studied using EYPC‒LUVsHPTS.
The carrier also exhibited Cl−/anion antiport across lipid bilayer
membranes. The geometry optimized structure of the 2:1 carrier-
Cl− complex showed multivalent hydrogen bond interactions
involved in the recognition of the anion. The mechanism of ONB
[10] S.-K. Ko, S. K. Kim, A. Share, V. M. Lynch, J. Park, W. Namkung, W.
Van Rossom, N. Busschaert, P. A. Gale, J. L. Sessler, I. Shin, Nat.
Chem. 2014, 6, 885‒892.
[11] N. Busschaert, S.-H. Park, K.-H. Baek, Y. P. Choi, J. Park, E. N. W.
Howe, J. R. Hiscock, L. E. Karagiannidis, I. Marques, V. Félix, W.
Namkung, J. L. Sessler, P. A. Gale, I. Shin, Nat. Chem. 2017, 9,
667‒675.
[12] T. Saha, M. S. Hossain, D. Saha, M. Lahiri, P. Talukdar, J. Am. Chem.
Soc. 2016, 138, 7558‒7567.
[13] a) E. N. W. Howe, N. Busschaert, X. Wu, S. N. Berry, J. Ho, M. E. Light,
D. D. Czech, H. A. Klein, J. A. Kitchen, P. A. Gale, J. Am. Chem. Soc.
2016, 138, 8301-8308; b) N. Busschaert, R. B. P. Elmes, D. D. Czech,
X. Wu, I. L. Kirby, E. M. Peck, K. D. Hendzel, S. K. Shaw, B. Chan, B.
D. Smith, K. A. Jolliffe, P. A. Gale, Chem. Sci. 2014, 5, 3617-3626; c) A.
Roy, O. Biswas, P. Talukdar, Chem. Comm 2017, 53, 3122-3125; d) S.
V. Shinde, P. Talukdar, Angew. Chem. Int. Ed. 2017, 56, 4238-4242.
[14] a) Y. R. Choi, B. Lee, J. Park, W. Namkung, K.-S. Jeong, J. Am. Chem.
Soc. 2016, 138, 15319-15322; b) E. B. Park, K.-S. Jeong, Chem.
Comm 2015, 51, 9197-9200.
1
photo-cleavage was also confirmed by the H NMR study. The
photocleavage of the ONB group facilitated up to 90.5%
transport efficiency within
3
minutes of radiation. The
photorelease of carrier 1d from procarrier 2 within cancer cells
and the resulting cell death were also confirmed by MTT assay.
This rewarding outcome, based on our simple and innovative
concept, can be extended in photodynamic therapy for surface
cancer treatment and can also be adapted for deep-seated
cancer therapy employing endoscopes or optical fibers.
[15] Y. R. Choi, G. C. Kim, H.-G. Jeon, J. Park, W. Namkung, K.-S. Jeong,
Chem. Comm 2014, 50, 15305-15308.
[16] a) J. A. Barltrop, P. Schofield, Tetrahedron Lett. 1962, 3, 697‒699; b) J.
A. Barltrop, P. J. Plant, P. Schofield, Chem. Comm. 1966, 822‒823.
[17] a) A. P. Pelliccioli, J. Wirz, Photochem. Photobiol. Sci. 2002, 1,
441‒458; b) P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M.
Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119‒191.
[18] a) I. R. Dunkin, J. Gębicki, M. Kiszka, D. Sanín-Leira, J. Chem. Soc.,
Perkin Trans. 2 2001, 1414‒1425; b) X. Bai, Z. Li, S. Jockusch, N. J.
Turro, J. Ju, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 409‒413; c) Y. V.
Il'ichev, M. A. Schwörer, J. Wirz, J. Am. Chem. Soc. 2004, 126,
4581‒4595.
Acknowledgements
This work was supported in part by collaborative grants from
SERB, DST, Govt. of India (Grant No. EMR/2016/001897) and
DBT (BT/HRD/NBA/36/06/2018). S.B.S. thanks DST, India for
the Inspire Fellowship. We thank Sopan V. Shinde for valuable
discussion.
[19] a) N.-C. Fan, F.-Y. Cheng, J.-a. A. Ho, C.-S. Yeh, Angew. Chem., Int.
Ed. 2012, 51, 8806‒8810; b) J. Liu, W. Bu, L. Pan, J. Shi, Angew.
Chem., Int. Ed. 2013, 52, 4375‒4379; c) W. S. Shin, J. Han, R. Kumar,
G. G. Lee, J. L. Sessler, J.-H. Kim, J. S. Kim, Sci. Rep. 2016, 6, 29018;
d) Y. Yang, J. Mu, B. Xing, Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 2017, 9, e1408.
Keywords: procarrier • photoactivation • anion binding • chloride
selectivity • apoptosis
[1]
a) L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J.
Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, W. F. DeGrado,
Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 11301‒11306; b) F. Lang, M.
Föller, K. S. Lang, P. A. Lang, M. Ritter, E. Gulbins, A. Vereninov, S. M.
Huber, J. Membr. Biol. 2005, 205, 147‒157.
[20] a) R. Reinhard, B. F. Schmidt, J. Org. Chem. 1998, 63, 2434‒2441; b)
W. Lin, D. Peng, B. Wang, L. Long, C. Guo, J. Yuan, Eur. J. Org. Chem.
2008, 2008, 793‒796; c) S. K. Choi, M. Verma, J. Silpe, R. E. Moody, K.
Tang, J. J. Hanson, J. R. Baker, Bioorganic Med. Chem. 2012, 20,
1281‒1290; d) S. Mo, Y. Wen, F. Xue, H. Lan, Y. Mao, G. Lv, T. Yi, Sci.
Bull. 2016, 61, 459‒467.
[2]
[3]
W. R. Sellers, D. E. Fisher, J. Clin. Invest. 1999, 104, 1655‒1661.
a) J. M. Brown, L. D. Attardi, Nat. Rev. Cancer 2005, 5, 231‒237; b) L.
Portt, G. Norman, C. Clapp, M. Greenwood, M. T. Greenwood, Biochim.
Biophys. Acta 2011, 1813, 238‒259.
2017); b) P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305‒1323.
[23] R. Benz, S. McLaughlin, Biophys. J. 1983, 41, 381‒398.
[24] L. Rose, A. T. A. Jenkins, Bioelectrochemistry 2007, 70, 387‒393.
[25] T. Saha, S. Dasari, D. Tewari, A. Prathap, K. M. Sureshan, A. K. Bera,
A. Mukherjee, P. Talukdar, J. Am. Chem. Soc. 2014, 136,
14128‒14135.
[4]
[5]
[6]
R. S. Y. Wong, J. Exp. Clin. Cancer Res. 2011, 30, 87.
F. H. Igney, P. H. Krammer, Nat. Rev. Cancer 2002, 2, 277‒288.
a) S. Matile, A. Vargas Jentzsch, J. Montenegro, A. Fin, Chem. Soc.
Rev. 2011, 40, 2453-2474; b) T. M. Fyles, Chem. Soc. Rev. 2007, 36,
335-347; c) P. V. Santacroce, J. T. Davis, M. E. Light, P. A. Gale, J. C.
Iglesias-Sánchez, P. Prados, R. Quesada, J. Am. Chem. Soc. 2007,
129, 1886-1887; d) O. A. Okunola, J. L. Seganish, K. J. Salimian, P. Y.
Zavalij, J. T. Davis, Tetrahedron 2007, 63, 10743-10750.
[26] a) H. Goto, S. Obata, N. Nakayama, K. Ohta, CONFLEX 8, CONFLEX
Corporation, Tokyo, Japan, 2012; b) H. Goto, E. Osawa, J. Am. Chem.
Soc. 1989, 111, 8950‒8951.
[7]
[8]
R. Pérez-Tomás, B. Montaner, E. Llagostera, V. Soto-Cerrato, Biochem.
Pharmacol. 2003, 66, 1447‒1452.
[27] M. J. Frisch, et al., Gaussian 09, Revision B.01; Gaussian, Inc.:
Wallingford, CT, 2010.
P. Manuel-Manresa, L. Korrodi-Gregório, E. Hernando, A. Villanueva, D.
Martínez-García, A. M. Rodilla, R. Ramos, M. Fardilha, J. Moya, R.
Quesada, V. Soto-Cerrato, R. Perez-Tomas, Mol. Cancer Ther. 2017,
16, 1224‒1235.
[28] A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639‒5648.
[29] a) D. Jornada, G. dos Santos Fernandes, D. Chiba, T. de Melo, J. dos
Santos, M. Chung, Molecules 2016, 21, 42; b) S. V. Gupta, D. Gupta, J.
Sun, A. Dahan, Y. Tsume, J. Hilfinger, K.-D. Lee, G. L. Amidon, Mol.
Pharm. 2011, 8, 2358‒2367.
[9]
a) N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernández, R.
Pérez-Tomás, P. A. Gale, J. Am. Chem. Soc. 2011, 133, 14136‒14148;
b) S. J. Moore, C. J. E. Haynes, J. González, J. L. Sutton, S. J. Brooks,
M. E. Light, J. Herniman, G. J. Langley, V. Soto-Cerrato, R. Pérez-
This article is protected by copyright. All rights reserved.