Organic Letters
Letter
Scheme 5. Proposed Catalytic Cycle
ACKNOWLEDGMENTS
■
This work was financially supported by the State Key
Laboratory of Organometallic Chemistry, the Shanghai
Institute of Organic Chemistry, the “Hundred Talents Plan”
of Chinese Academy of Sciences, the “Thousand Youth
Talents Plan”, the Shanghai Sailing Program (Grant No.
1
7YF1424100), the National Natural Science Foundation of
China (Grant No. 21702222), the Science and Technology
Commission of Shanghai Municipality (Grant No.
1
7JC1401200), and the Strategic Priority Research Program
of the Chinese Academy of Sciences (Grant No.
XDB20000000).
racemerization, delivering exclusive 4,1-addition product VI.
Protonation of the Cu−N bond by t-BuOH released the
product 3a and generated Cu complex VII, which underwent
σ-bond metathesis with silane to regenerate Cu−H complex
III. Two transition states of allylation are shown in Scheme 5
to illustrate the stereoselectivity. In TS2, the proximity of the
large phosphonoyl group and the phosphine ligand on Cu
leads to the steric repulsion and raised the energy of such a
pathway. In the absence of such a disadvantageous interaction,
a pathway through TS1 that led to the major diastereomer 3a
was favored.
In conclusion, we developed an unprecedented protocol of
catalytic enantioselective generation of chiral secondary allyl−
Cu complexes through Cu−H addition to 1,3-dienes followed
by their in situ addition to aldimines, providing a wide range of
homoallylic amines in high chemo-, regio-, diastereo-, and
enantioselectivity. The reactions were performed with easily
accessible starting materials in the presence of a readily
available phosphine−Cu complex. Functionalization of the
product afforded a variety of useful building blocks that are
otherwise difficult to access. Further investigations on
expanding the scope of alkenes to generate enantiomerically
enriched organometallic complexes are underway.
REFERENCES
■
(
1) (a) Ding, H.; Friestad, G. K. Synthesis 2005, 2005, 2815−2829.
(
b) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541−2569.
(
(
1
2) For general reviews that discuss allyl additions to imines, see:
a) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895−
946. (b) Bloch, R. Chem. Rev. 1998, 98, 1407−1438. (c) Kobayashi,
S.; Ishitani, H. Chem. Rev. 1999, 99, 1069−1094. For recent reviews
on Cu-catalyzed enantioselective nucleophilic addition to imines, see:
(d) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853−2873.
(e) Yamada, K.; Tomioka, K. Chem. Rev. 2008, 108, 2874−2886.
(3) For recent examples on catalytic enantioselective allylation of
imines, see: (a) Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2011, 133, 3332−3335. (b) Gandhi, S.; List, B. Angew.
Chem., Int. Ed. 2013, 52, 2573−2576. (c) Luo, Y.; Hepburn, H. B.;
Chotsaeng, N.; Lam, H. W. Angew. Chem., Int. Ed. 2012, 51, 8309−
8
5
313. (d) Hepburn, H. B.; Lam, H. W. Angew. Chem., Int. Ed. 2014,
3, 11605−11610. (e) Ghosh, D.; Bera, P. K.; Kumar, M.; Abdi, S. H.
R.; Khan, N. H.; Kureshy, R. I.; Bajaj, H. C. RSC Adv. 2014, 4,
5
6424−56433. (f) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E.
M.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494,
K. J.
2
16−221. (g) Alam, R.; Diner, C.; Jonker, S.; Eriksson, L.; Szabo,
́
Angew. Chem., Int. Ed. 2016, 55, 14417−14421. (h) Wu, L.; Shao, Q.;
Yang, G.; Zhang, W. Chem. - Eur. J. 2018, 24, 1241−1245.
(4) For recent reviews, see: (a) Jang, H.-Y.; Krische, M. J. Acc. Chem.
Res. 2004, 37, 653−661. (b) Skucas, E.; Ngai, M.-Y.; Komanduri, V.;
Krische, M. J. Acc. Chem. Res. 2007, 40, 1394−1401. (c) Feng, J.;
Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 12564−12580.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
2
d) Kim, S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50,
371−2380. (e) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem.
Rev. 2018, 118, 6026−6052. (f) Nguyen, K. D.; Park, B. Y.; Luong,
T.; Sato, H.; Garza, V. J.; Krische, M. J. Science 2016, 354, 300.
(
6
g) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118,
026−6052.
5) For recent selected examples, see: (a) Holmes, M.; Nguyen, K.
Experimental procedures, spectroscopic data, and NMR
spectra for all products; X-ray structures and data for 3a
(
D.; Schwartz, L. A.; Luong, T.; Krische, M. J. J. Am. Chem. Soc. 2017,
139, 8114−8117. (b) Nguyen, K. D.; Herkommer, D.; Krische, M. J. J.
Am. Chem. Soc. 2016, 138, 14210−14213. (c) Nguyen, K. D.;
Herkommer, D.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 5238−
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
5
241. (d) Liang, T.; Nguyen, K. D.; Zhang, W.; Krische, M. J. J. Am.
Chem. Soc. 2015, 137, 3161−3164. For additional references, see SI.
6) For a Ni-catalyzed asymmetric reductive coupling of alkynes and
(
imines, see: (a) Kong, J.-R.; Cho, C.-W.; Krische, M. J. J. Am. Chem.
Soc. 2005, 127, 11269−11276. (b) Skucas, E.; Kong, J. R.; Krische, M.
J. J. Am. Chem. Soc. 2007, 129, 7242−7243. (c) Zhou, C.-Y.; Zhu, S.-
F.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955−
AUTHOR INFORMATION
■
*
1
0957. For nonenantioselective examples, see: (d) Chen, T.-Y.;
Tsutsumi, R.; Montgomery, T. P.; Volchkov, I.; Krische, M. J. J. Am.
Chem. Soc. 2015, 137, 1798−1801. (e) Oda, S.; Franke, J.; Krische, M.
J. Chem. Sci. 2016, 7, 136−141. (f) Komanduri, V.; Grant, C. D.;
Krische, M. J. J. Am. Chem. Soc. 2008, 130, 12592−12593.
ORCID
Notes
(7) (a) Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137,
4
666−4669. (b) Yang, Y.; Perry, I. B.; Buchwald, S. L. J. Am. Chem.
The authors declare no competing financial interest.
Soc. 2016, 138, 9787−9790. (c) Liu, R. Y.; Yang, Y.; Buchwald, S. L.
D
Org. Lett. XXXX, XXX, XXX−XXX