STUDY OF THE KINETIC PARAMETERS
2321
Kinetic constants for transglucosylation reaction catalyzed
by maltase
maltose drops to value comparable to
this point the reaction should be stopped before the
system enters thermodynamic equilibrium.
α
ꢀisosalicin. At
A isosalicin
synthesis
Constant
m, mM
Vmax mol/(min mg)
cat, s–1
hydrolysis
ACKNOWLEGMENTS
K
6.62
0.616
2.5
0.61
8.30
This study was supported by Ministry of Science of
Republic of Serbia, project no. 172049.
,
μ
k
33.67
55.2
K
spec, s–1/mM–1
0.38
REFERENCES
Note:
K
represents real measure of affinity of some enzyme
1. N. B. Milosavicꢂ, R. M. Prodanovicꢂ, and R. M. Jankov,
Tetrahedron Lett. 48, 7222 (2007).
2. O. M. Poltorak, E. S. Chukhrai, O. S. Pilipenko,
L. F. Atyaksheva, and A. E. Beregalov, Russ. J. Phys.
Chem. A 81 (5), 808 (2007).
spec
toward its substrate and it is equal to the ratio between
and
k
cat
K .
m
Because Vmax is the rate of the reaction when all
enzyme molecules are in complex with its substrate, it
3. F. Rantwijk, M. W. Oosterom, and R. A. Sheldon,
J. Mol. Catal. B: Enzym. 6, 511 (1999).
is possible to determine
strate ([S] 10 m). Therefore Vmax for this reaction
was determined from concentration of 6 mM
salicin (10 m), and calculated to be Vmax
8.3 M/(min mg).
Results for hydrolysis and synthesis of
Vmax in the high excess of subꢀ
4. R. M. Prodanovicꢂ, N. B. Milosavicꢂ, D. Sladicꢂ
T. C. Velickovicꢂ, and Z. Vujcicꢂ, Biotechnol. Lett. 27
551 (2005).
,
,
≥
K
h
αꢀisoꢀ
5. E. S. Seo, J. H. Lee, J. Y. Park, D. Kim, H. J. Han, and
J. F. Robyt, J. Biotechnol. 117, 31 (2005).
6. H. K. Shin, J. Y. Kong, J. D. Lee, and T. H. Lee, Bioꢀ
K
=
μ
technol. Lett. 22, 321 (2000).
α
glucoside
of salicyl alcohol are summarized in table.
7. S. H. Yoon, D. B. Fulton, and J. F. Robyt, Carbohyd.
Res. 339, 1517 (2004).
8. G. A. Bonaterra, E. U. Heinrich, O. Kelber, D. Weiser,
J. Metz, and R. Kinscherf, Phytomedicine 17, 1106
(2010).
CONCLUSION
To the best of authors’ knowledge, this is the first
time that detailed kinetic study of transglucosylation
activity of a glucosidase from Saccharomyces cerevisiae
was examined. Also this is the first time ever that by
using kinetic parameters, secondary hydrolysis of
9. P. Monsan and F. Paul, FEMS Microbiol. Rev. 16, 187
(1995)
10. R. Kawai, K. Igarashi, M. Kitaoka, T. Ishii, and
M. Samejima, Carbohydr. Res. 339, 2851 (2004).
11. O. S. Pilipenko, L. F. Atyaksheva, and E. S. Chukhrai,
created product by
α
ꢀglucosidase was described,
Russ. J. Phys. Chem. A 84 (1), 118 (2010).
although it is crucial for maximal yield of transglucoꢀ
sylation. Constants calculated in our study are derivaꢀ
tive from our experimental condition, but it is obvious
(Eqs. (1)–(4)) that in other concentrations of malꢀ
tose, or maltose and alcohol in case of hydrolysis,
these constants are different.
12. R. Prodanovicꢂ, N. Milosavicꢂ, D. Sladic, M. Zlatovicꢂ
B. Bozicꢂ, T. C. Velickovi and Z. Vujcicꢂ, J. Mol. Catal.
B: Enzym. 35, 142 (2005).
,
c,ꢂ
13. V. Leskovac, Comprehensive Enzyme Kinetics (Plenum,
New York, 2003) pp. 51–72.
14. W. Halwachc, Biotech. Bioeng. 20, 281 (1978).
In order for enzyme to work with maximal rate,
minimal alcohol concentration needed for the syntheꢀ
sis of ꢀisosalicin is about 10 mM, as shown in table.
15. K. Okamura, M. Sakamoto, and T. Ishikura, J. Anyibiꢀ
otics 33 (3), 293 (1979).
α
16. I. A. Nimmo and G. L. Atkins, Biochem. J. 141, 913
It would be wrong to conclude that when concentraꢀ
tion of the product reaches near 1 mM and concentraꢀ
tion of alcohol is 10 times smaller than product, secꢀ
ondary hydrolysis starts. It should be emphasized that
large amount of maltose is present in the reaction mixꢀ
ture (1.2 M), and as Km for maltose is 80 mM [18]
(1974).
17. G. H. M. Counotte and R. A. Prins, Appl. Environ.
Microbiol. 38 (4), 758 (1979).
18. K. Yamamoto, A. Nakayama, Y. Yamamoto, and
S. Tabata, Eur. J. Biochem. 271, 3414 (2004).
19. E. V. Eneyskaya, A. M. Golubev, A. M. Kachurin,
A. N. Savel’ev, and K. N. Neustroev, Carbohydr. Res.
305, 83 (1998).
enzyme practically “does not feel” the ꢀisosalicin.
α
Secondary hydrolysis starts when concentration of
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
Vol. 85
No. 13
2011