Enantioselective Michael-Type Friedel–Crafts Reactions of Indoles
SHORT COMMUNICATION
Table 2. Michael-type Friedel–Crafts reactions of indoles with en-
ones catalyzed by -CSA and its acidic BmimBr–CSA complex.
[1] a) G. A. Olah, R. Krishnamurty, G. K. S. Prakash, “Friedel–
Crafts Alkylation” in Comprehensive Organic Synthesis, 1st ed.
(
1
1
Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, vol III,
991, p. 293; b) D. F. Taber, W. Tian, J. Am. Chem. Soc. 2006,
28, 1058–1059; c) Y. Q. Wang, J. Song, R. Hong, H. Li, L.
Deng, J. Am. Chem. Soc. 2006, 128, 8156–8157 and references
cited therein.
[
2] Selected references: a) J. E. Saxton, Nat. Prod. Rep. 1997, 14,
5
59; b) M. Toyota, N. Ihara, Nat. Prod. Rep. 1998, 15, 327 and
Entry[a]
Catalyst
Enones
Indoles
Yield
[
ee
[%]
references cited therein; c) P. S. Baran, J. M. Richter, J. Am.
Chem. Soc. 2004, 126, 7450–7451; d) G. R. Humphrey, J. T.
Kuethe, Chem. Rev. 2006, 106, 2875–2911.
%][
b]
[c]
1
3
1
2
3
4
5
6
7
8
9
-CSA
R = H;
R = H
3a: 78
18
19
37
58
21
26
0
2
R = H
[3] F. Bigi, G. Casiraghi, G. Casnati, G. Sartori, G. Gasparri Fava,
M. Ferrari Belicchi, J. Org. Chem. 1985, 50, 5018–5022.
[4] a) J. Zhou, Y. Tang, J. Am. Chem. Soc. 2002, 124, 9030–9031;
b) J. Zhou, M. C. Ye, Z. Z. Huang, Y. Tang, J. Org. Chem.
2004, 69, 1309–1320; c) S. Yamazaki, Y. Iwata, J. Org. Chem.
2006, 71, 739–743; d) Y. X. Jia, S. F. Zhu, Y. Yang, Q. L. Zhou,
J. Org. Chem. 2006, 71, 75–80.
1
3
BmimBr–CSA R = H;
R = H
3a: 96
3b: 92
3b: 90
3c: 75
3c: 85
3d: 96
3d: 92
3e: 96
2
R = H
1
3
-CSA
R = H;
R = H
2
R = p-Cl
1
3
BmimBr–CSA R = H;
R = H
2
R = p-Cl
1
3
-CSA
R = p-OCH
3
;
;
R = H
[5]
a) D. A. Evans, K. A. Scheidt, K. R. Fandrick, H. W. Lam, J.
Wu, J. Am. Chem. Soc. 2003, 125, 10780–10781; b) R. P. Her-
rera, V. Sgarzani, L. Bernardi, A. Ricci, Angew. Chem. Int. Ed.
2
R = H
1
3
BmimBr–CSA R = p-OCH
3
R = H
2
R = H
2
005, 44, 6576–6579; c) C. Palomo, M. Oiarbide, B. G. Kardak,
1
3
-CSA
R = H;
R = H
J. M. Garcia, A. Linden, J. Am. Chem. Soc. 2005, 127, 4154–
2
R = o-Cl
4
2
155; d) S. F. Lu, D. M. Du, J. Xu, Org. Lett. 2006, 8, 2115–
118.
1
3
BmimBr–CSA R = H;
R = H
29
22
2
R = o-Cl
[
6] a) M. Bandini, M. Fagioli, P. Melchiorre, A. Melloni, A. Um-
ani-Ronchi, Tetrahedron Lett. 2003, 44, 5843–5846; b) M. Ban-
dini, M. Fagioli, M. Garavelli, A. Melloni, V. Trigari, A. Um-
ani-Ronchi, J. Org. Chem. 2004, 69, 7511–7518.
1
3
-CSA
R = H;
R = 5-
Br
2
R = H
1
3
10
11
12
BmimBr–CSA R = H;
R = 5-
3e: 96
3f: 77
3f: 76
24
25
21
[
7] W. Zhou, L. W. Xu, L. Yang, P. Q. Zhao, C. G. Xia, J. Mol.
Br
Catal. A 2006, 249, 129–134.
2
R = H
[
8] a) B. M. Trost, J. D. Chisholm, Org. Lett. 2002, 4, 3743–3745;
b) I. Hanna, Tetrahedron Lett. 1999, 40, 2521–2524; c) F. Bon-
adies, F. De Angelis, L. Locati, A. Scettri, Tetrahedron Lett.
1
3
-CSA
R = H;
R = 5-
Br
2
R = p-Cl
1
996, 37, 7129–7130; d) P. A. Grieco, S. T. Handy, J. P. Beck,
1
3
BmimBr–CSA R = H;
R = 5-
Tetrahedron Lett. 1994, 35, 2633–2666; e) P. A. Grieco, J. P.
Beck, S. T. Handy, N. Saito, J. F. Daeuble, E. E. Campaigne,
M. Carmack, Tetrahedron Lett. 1994, 35, 6783–6786.
Br
2
R = p-Cl
1
3
1
1
1
3
-CSA
R = H;
R = H
3g: 75
3g: 74
3b: 55
8
[
9] a) T. Welton, Chem. Rev. 1999, 99, 2071; b) D. Zhao, M. Wu,
Y. Kou, E. Min, Catal. Today 2002, 74, 157; c) A. Cosson, M.
Johansson, J. E. Bäckvall, Chem. Commun. 2004, 1494.
10] a) K. L. Tran, K. J. Weaver, D. C. Forbes, J. H. Davis, J. Am.
Chem. Soc. 2002, 124, 5962; b) J. S. Yadav, B. V. S. Reddt, G.
Baishya, J. Org. Chem. 2003, 68, 7098; c) S. M. S. Chauhan, A.
Kumar, K. A. Srinivas, A. C. Cole, J. L. Jensen, I. Nitai, Chem.
Commun. 2003, 2348; d) L. W. Xu, L. Li, C. G. Xia, S. L. Zhou,
J. W. Li, Tetrahedron Lett. 2004, 45, 1219.
[11] a) N. Brausch, A. Metlen, P. Wasserscheid, Chem. Commun.
2004, 1552–1553; b) Y. L. Gu, F. Shi, Y. Q. Deng, J. Mol. Catal.
A 2004, 212, 71–75; c) A. C. Cole, J. L. Jensen, I. Ntai, K. L. T.
Tran, K. J. Weaver, D. C. Forbes Jr, J. H. Davis, J. Am. Chem.
Soc. 2002, 124, 5962–5963; d) G. Zhao, T. Jiang, H. Gao, B. X.
Han, J. Huang, D. Sun, Green Chem. 2004, 6, 75–77.
2
R = p-OCH
3
1
3
4
BmimBr–CSA R = H;
R = H
13
25
2
R = p-OCH
3
[
5[d]
BmimBr–CSA R = H;
1
R = H
3
2
R = p-Cl
[a] Experimental conditions: To a solution of enone (0.5 mmol) and
indole (0.55 mmol) in solvent (3 mL), catalyst (0.05 mmol of -
CSA or 0.12 mmol of BmimBr–CSA complex) was added. All reac-
tions were carried out at room temp. for 12 h. [b] Isolated yields.
[
c] Determined by chiral stationary phase HPLC. [d] The catalyst
was recovered and used for a second time.
β-position in excellent yields and moderate enantiomeric
excesses. Further investigation into the novel chiral sulfonic [12] See Supporting Information, and a) J. Fraga-Dubreuil, K. Bou-
acid catalyst is now in progress.
rahla, M. Rahmouni, J. P. Bazureau, J. Hamelin, Chem. Com-
mun. 2002, 2399–2400; b) H. P. Zhu, F. Yang, J. Tang, M. Y.
He, Green Chem. 2003, 5, 38.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures and spectral data for all new
compounds.
[
13] Recent examples: a) D. Nakashima, H. Yamamoto, J. Am.
Chem. Soc. 2006, 128, 9626; b) D. Nakashima, H. Yamamoto,
Synlett 2006, 150; c) A. Hasegawa, Y. Naganawa, M. Fushimi,
K. Ishihara, H. Yamamoto, Org. Lett. 2006, 8, 3175; d) H.
Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed. 2005, 44,
Acknowledgments
1
924, and references cited therein.
This work was supported by the National Nature Science Founda-
tion of China (Project No. 20572114 and 20533080).
Received: July 26, 2006
Published Online: October 12, 2006
Eur. J. Org. Chem. 2006, 5225–5227
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5227