It is known that streptavidin itself has a propensity to as-
semble into oligomers beyond the tetramer.46 We suspect that
our recognition modules are working cooperatively with this
native oligomerization interface to form a stabilized aggregate.
It is possible that partial or complete burial of the TCA/TM
complex at this protein–protein interface facilitates assembly. To
probe this notion, we synthesized a system with more “exposed”
TCA/TM modules by coupling these groups via thioether for-
mation with the sulfhydryl sidechain of the N-terminal cysteine
of a dimeric coiled-coil peptide (Fig. 4).47 These peptides were
readily synthesized on solid phase, purified, then coupled to
TCA/TM chlorides in PBS buffer. While these peptides retained
their ability to form dimeric coiled-coils as judged by analytical
ultracentrifuge, no higher oligomerization states were observed by
AUC under mid to high micromolar conditions (Fig. 4). Thus,
it appears that the dimeric coiled coil platform does not medi-
ate assembly, possibly because of insufficient interfacial surface
area.
Acknowledgements
This work was supported in part by the NSF and the Institute of
Materials Research at the Ohio State University. We thank Deniz
Yu¨ksel and Prof. Krishna Kumar for assistance with analytical
ultracentrifuge experiments. The Analytical Ultracentrifugation
facility at Tufts University is supported by the NIH.
Notes and references
1 N. Huebsch and D. J. Mooney, Nature, 2009, 462, 426–432.
2 R. V. Lewis, Chem. Rev., 2006, 106, 3762–3774.
3 L. Little, K. E. Healy and D. Schaffer, Chem. Rev., 2008, 108, 1787–
1796.
4 A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney,
C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R.
Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science, 2006,
311, 484–489.
5 D. N. Woolfson and Z. N. Mahmoud, Chem. Soc. Rev., 2010, 39, 3464–
3479.
6 S. I. Stupp, Nano Lett., 2010, 10, 4783–4786.
7 T. J. Deming, Prog. Polym. Sci., 2007, 32, 858–875.
8 K. Rajagopal and J. P. Schneider, Curr. Opin. Struct. Biol., 2004, 14,
480–486.
9 C. Q. Yan and D. J. Pochan, Chem. Soc. Rev., 2010, 39, 3528–3540.
10 D. A. Fletcher and D. Mullins, Nature, 2010, 463, 485–492.
11 T. D. Pollard and J. A. Cooper, Science, 2009, 326, 1208–1212.
12 H. Y. Kueh and T. J. Mitchison, Science, 2009, 325, 960–963.
13 M. Schliwa and G. Woehlke, Nature, 2003, 422, 759–765.
14 M. G. L. van den Heuvel and C. Dekker, Science, 2007, 317, 333–
336.
15 C. M. Dobson, Nature, 2003, 426, 884–890.
16 D. J. Selkoe, Nature, 2003, 426, 900–904.
17 R. Wetzel, Cell, 1996, 86, 699–702.
18 R. Roychaudhuri, M. Yang, M. M. Hoshi and D. B. Teplow, J. Biol.
Chem., 2009, 284, 4749–4753.
19 T. H. Bayburt and S. G. Sligar, FEBS Lett., 2010, 584, 1721–
1727.
20 D. B. Teplow, N. D. Lazo, G. Bitan, S. Bernstein, T. Wyttenbach, M. T.
Bowers, A. Baumketner, J. E. Shea, B. Urbanc, L. Cruz, J. Borreguero
and H. E. Stanley, Acc. Chem. Res., 2006, 39, 635–645.
21 Y. Levy and J. N. Onuchic, Acc. Chem. Res., 2006, 39, 135–142.
22 T. Pawson and P. Nash, Science, 2003, 300, 445–452.
23 A. Fegan, B. White, J. C. T. Carlson and C. R. Wagner, Chem. Rev.,
2010, 110, 3315–3336.
24 E. N. Salgado, R. J. Radford and F. A. Tezcan, Acc. Chem. Res., 2010,
43, 661–672.
25 P. Ringler and G. E. Schulz, Science, 2003, 302, 106–109.
26 M. R. Arkin, M. Randal, W. L. DeLano, J. Hyde, T. N. Luong, J. D.
Oslob, D. R. Raphael, L. Taylor, J. Wang, R. S. McDowell, J. A. Wells
and A. C. Braisted, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 1603–
1608.
Fig. 4 (Top) Illustration of the formation of peptide heterodimers
functionalized with TCA and TM that do not assemble into higher
aggregates. (Bottom) Analytical ultracentrifuge data of a mixture of the
TCA and TM heterodimers fit to a heterodimer model (solid line).
In summary, we have demonstrated the ability of synthetic
recognition groups based on cyanuric acid and melamine recogni-
tion to trigger the assembly of streptavidin protein in a reversible
manner. We have noncovalently conjugated these recognition
modules to streptavidin in a defined manner using the native
biotin ligand binding sites through biotin coupling to TCA
and TM and shown thermally reversible assembly. Thus, this
synthetic recognition motif, which has been shown to be functional
in aqueous solution41 and at the lipid–water interface, also
functions at a protein–protein interface. However, our experiments
with coiled-coil peptides suggest that an interface that provides
sufficient burial of the recognition module is necessary for recog-
nition. This is entirely consistent with our studies on TCA/TM
recognition in isolation, and bodes well for future efforts using
these synthetic motifs for directing biomolecular interactions in
the synthesis of novel biomaterials and functional molecular
assemblies.
27 S. Atwell, M. Ultsch, A. M. DeVos and J. A. Wells, Science, 1997, 278,
1125–1128.
28 W. L. DeLano, M. H. Ultsch, A. M. de Vos and J. A. Wells, Science,
2000, 287, 1279–1283.
29 M. G. J. ten Cate, J. Huskens, M. Crego-Calama and D. N. Reinhoudt,
Chem.–Eur. J., 2004, 10, 3632–3639.
30 K. Damodaran, G. J. Sanjayan, P. R. Rajamohanan, S. Ganapathy and
K. N. Ganesh, Org. Lett., 2001, 3, 1921–1924.
31 A. Ranganathan, V. R. Pedireddi and C. N. R. Rao, J. Am. Chem. Soc.,
1999, 121, 1752–1753.
32 J. A. Zerkowski, J. C. MacDonald, C. T. Seto, D. A. Wierda and G. M.
Whitesides, J. Am. Chem. Soc., 1994, 116, 2382–2391.
33 J. P. Mathias, E. E. Simanek, C. T. Seto and G. M. Whitesides,
Macromol. Symp., 1994, 77, 157–166.
34 C. T. Seto and G. M. Whitesides, J. Am. Chem. Soc., 1993, 115, 905–
916.
35 J. A. Zerkowski, C. T. Seto and G. M. Whitesides, J. Am. Chem. Soc.,
1992, 114, 5473–5475.
36 Y. Wang, B. Wei and Q. Wang, J. Chem. Cryst., 1990, 20, 79–84.
37 C. T. Seto and G. M. Whitesides, J. Am. Chem. Soc., 1990, 112, 6409–
6411.
7298 | Org. Biomol. Chem., 2011, 9, 7296–7299
This journal is
The Royal Society of Chemistry 2011
©