Biochemistry
Article
monophosphate decarboxylase: Evidence for the existence of a short-
(21) Lewis, C. A. Jr., and Wolfenden, R. (2009) Orotic acid
decarboxylation in water and nonpolar solvents: A potential role for
desolvation in the action of OMP decarboxylase. Biochemistry 48,
8738−8745.
(22) Crosby, J., and Lienhard, G. E. (1970) Mechanisms of thiamine-
catalyzed reactions. A kinetic analysis of the decarboxylation of
pyruvate by 3,4-dimethylthiazolium ion in water and ethanol. J. Am.
Chem. Soc. 92, 5707−5716.
(23) Crosby, J., Stone, R., and Lienhard, G. E. (1970) Mechanisms of
thiamine-catalyzed reactions. Decarboxylation of 2-(1-carboxy-1-
hydroxyethyl)-3,4-dimethylthiazolium chloride. J. Am. Chem. Soc. 92,
2891−2900.
(24) Wood, B. M., Chan, K. K., Amyes, T. L., Richard, J. P., and
Gerlt, J. A. (2009) Mechanism of the orotidine 5′-monophosphate
decarboxylase-catalyzed reaction: Effect of solvent viscosity on kinetic
constants. Biochemistry 48, 5510−5517.
lived carbanion intermediate. J. Am. Chem. Soc. 129, 12946−12947.
(
3) Amyes, T. L., Wood, B. M., Chan, K., Gerlt, J. A., and Richard, J.
P. (2008) Formation and stability of a vinyl carbanion at the active site
of orotidine 5′-monophosphate decarboxylase: pKa of the C-6 proton
of enzyme-bound UMP. J. Am. Chem. Soc. 130, 1574−1575.
(
4) Chan, K. K., Wood, B. M., Fedorov, A. A., Fedorov, E. V., Imker,
H. J., Amyes, T. L., Richard, J. P., Almo, S. C., and Gerlt, J. A. (2009)
Mechanism of the orotidine 5′-monophosphate decarboxylase-
catalyzed reaction: Evidence for substrate destabilization. Biochemistry
4
8, 5518−5531.
(
5) Wu, N., Mo, Y., Gao, J., and Pai, E. F. (2000) Electrostatic stress
in catalysis: Structure and mechanism of the enzyme orotidine
monophosphate decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 97, 2017−
2
022.
(
6) Miller, B. G., Hassell, A. M., Wolfenden, R., Milburn, M. V., and
Short, S. A. (2000) Anatomy of a proficient enzyme: The structure of
orotidine 5′-monophosphate decarboxylase in the presence and
absence of a potential transition state analog. Proc. Natl. Acad. Sci.
U.S.A. 97, 2011−2016.
(25) Levine, H.L., Brody, R. S., and Westheimer, F. H. (1980)
Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-
β-D-ribofuranosyl)barbituric acid, 6-azauridine 5′-phosphate, and
uridine 5′-phosphate. Biochemistry 19, 4993−4999.
(
26) Datsenko, K. A., and Wanner, B. L. (2000) One-step
(
7) Appleby, T. C., Kinsland, C., Begley, T. P., and Ealick, S. E.
2000) The crystal structure and mechanism of orotidine 5′-
monophosphate decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 97,
005−2010.
8) Harris, P., Navarro Poulsen, J. C., Jensen, K. F., and Larsen, S.
2000) Structural basis for the catalytic mechanism of a proficient
enzyme: orotidine 5′-monophosphate decarboxylase. Biochemistry 39,
217−4224.
9) Warshel, A., Strajbl, M., Villa, J., and Florian, J. (2000)
inactivation of chromosomal genes in Escherichia coli K-12 using
PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640−6645.
(
(27) Otwinowski, Z., and Minor, W. (1997) Processing of X-ray
2
diffraction data collected in oscillation mode. In Methods in
Enzymology (Carter, C. W. J., Sweet, R. M., Abelson, J. N., and
Simon, M. I., Eds.) pp 307−326, Academic Pres, New York.
(
(
(28) Long, F., Vagin, A. A., Young, P., and Murshudov, G. N. (2008)
4
BALBES: A molecular-replacement pipeline. Acta Crystallogr. D64,
25−132.
29) Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools
for molecular graphics. Acta Crystallogr. D60, 2126−2132.
30) Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I.
(
1
Remarkable rate enhancement of orotidine 5′-monophosphate
decarboxylase is due to transition-state stabilization rather than to
ground-state destabilization. Biochemistry 39, 14728−14738.
(
(
(
10) Warshel, A., Florian, J., Strajbl, M., and Villa, J. (2001) Circe
W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-
Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R.
J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P.
H. (2010) PHENIX: A comprehensive Python-based system for
macromolecular structure solution. Acta Crystallogr. D66, 213−221.
effect versus enzyme preorganization: What can be learned from the
structure of the most proficient enzyme? ChemBioChem 2, 109−111.
(
11) Kamerlin, S. C., Chu, Z. T., and Warshel, A. (2010) On catalytic
preorganization in oxyanion holes: Highlighting the problems with the
gas-phase modeling of oxyanion holes and illustrating the need for
complete enzyme models. J. Org. Chem. 75, 6391−6401.
(
31) Lamzin, V. S., and Wilson, K. S. (1997) Automated refinement
for protein crystallography. Methods Enzymol. 277, 269−305.
32) Wood, B. M., Amyes, T. L., Fedorov, A. A., Fedorov, E. V.,
(
12) Sievers, A., and Wolfenden, R. (2002) Equilibrium of formation
(
of the 6-carbanion of UMP, a potential intermediate in the action of
Shabila, A., Almo, S. C., Richard, J. P., and Gerlt, J. A. (2010)
Conformational changes in orotidine 5′-monophosphate decarbox-
ylase: “Remote” residues that stabilize the active conformation.
Biochemistry 49, 3514−3516.
OMP decarboxylase. J. Am. Chem. Soc. 124, 13986−13987.
(
13) Van Vleet, J. L., Reinhardt, L. A., Miller, B. G., Sievers, A., and
Cleland, W. W. (2008) Carbon isotope effect study on orotidine 5′-
monophosphate decarboxylase: Support for an anionic intermediate.
Biochemistry 47, 798−803.
(33) Barnett, S.A., Amyes, T. L., Wood, B. M., Gerlt, J. A., and
Richard, J. P. (2008) Dissecting the total transition state stabilization
provided by amino acid side chains at orotidine 5′-monophosphate
decarboxylase: A two-part substrate approach. Biochemistry 47, 7785−
(
14) Lee, J. K., and Houk, K. N. (1997) A proficient enzyme
revisited: The predicted mechanism for orotidine monophosphate
decarboxylase. Science 276, 942−945.
7
787.
34) DeLano, W. L. (2002) The PyMOL Molecular Graphics System,
DeLano Scientific LLC, San Carlos, CA.
(
15) Gerlt, J. A., and Gassman, P. G. (1993) An Explanation for
(
Rapid Enzyme-Catalyzed Proton Abstraction from Carbon Acids: The
Importance of Late Transition States in Concerted Mechanisms. J. Am.
Chem. Soc. 115, 11552−11569.
(
16) Cleland, W. W., and Kreevoy, M. M. (1994) Low-barrier
hydrogen bonds and enzymic catalysis [see comments]. Science 264,
887−1890.
17) Shan, S. O., and Herschlag, D. (1996) The change in hydrogen
1
(
bond strength accompanying charge rearrangement: Implications for
enzymatic catalysis. Proc. Natl. Acad. Sci. U.S.A. 93, 14474−14479.
(
18) Gerlt, J. A., Kreevoy, M. M., Cleland, W., and Frey, P. A. (1997)
Understanding enzymic catalysis: The importance of short, strong
hydrogen bonds. Chem. Biol. 4, 259−267.
(
19) Cleland, W. W., Frey, P. A., and Gerlt, J. A. (1998) The low
barrier hydrogen bond in enzymatic catalysis. J. Biol. Chem. 273,
5529−25532.
20) Houk, K. N., Lee, J. K., Tantillo, D. J., Bahmanyar, S., and
2
(
Hietbrink, B. N. (2001) Crystal structures of orotidine mono-
phosphate decarboxylase: Does the structure reveal the mechanism
of nature’s most proficient enzyme? ChemBioChem 2, 113−118.
8
507
dx.doi.org/10.1021/bi2012355|Biochemistry 2011, 50, 8497−8507