A R T I C L E S
Scott et al.
Scheme 1. Peptidomimetic Scaffolds Available from Versatile
peptidomimetic scaffolds based on A or B, including many cases
of an underrepresented class of derivatives in which the position
alpha to the amine and lactam carbonyl is functionalized (e.g.,
R1 in structure B). This is accomplished through the synthesis
and use of a remarkably stable and versatile class of resin-bound
6
aldehyde intermediates (1). The multipotent nature of 1 is
demonstrated by preparing a representative series of five
peptidomimetic scaffolds: lactones 2, lactams 3, bicyclics 4,
tricyclics 5, and tetracyclics 6 (Scheme 1). The importance of
the scaffolds formed from 1, well documented in the solution
literature, will be discussed in more detail in the appropriate
sections of this article. The simple synthetic procedures reported
permit a wide diversity of substitution patterns and are, in this
7
sense, combinatorial chemistry enabled. In every case, the
1
is prepared under achiral conditions and the resulting products
release of final products from resin is by a cyclitive cleavage
8
are racemic, which is compatible with their use at the beginning
stages of a discovery process. When 1 is combined, in sub-
sequent convergent syntheses, with chiral reagents, the diaster-
process. This removes the need for “resin-linker handles” that
remain on the products. Since cyclitive cleavage depends on
successful completion of multiple intermediate synthetic steps,
the products are often quite pure, even though previous steps
involve only a filtration workup.
With solid-phase based chemistry9,10 the multiple step
sequences described in this report are quickly carried out on a
micromole scale. Even peptidomimetic scaffold syntheses
requiring as many as 10 steps provide good overall yields. Resin
(
7) Selected combinatorial chemistry monographs and reviews: (a) A Practical
Guide to Combinatorial Chemistry. Czarnik, A. W., DeWitt, S. H., Eds.;
American Chemical Society: Washington, DC, 1997. (b) Moos, W. H.;
Pavia, M. R.; Kay, B. K.; Ellington, A. D. Annual Reports in Combinatorial
Chemistry and Molecular DiVersity, Vol. 1; ESCOM: Leiden, 1997. (c)
Combinatorial Chemistry: Synthesis and Application; Wilson, S. R.,
Czarnik, A. W., Eds.; Wiley-Interscience: New York, 1997. (d) Bunin, B.
A. The Combinatorial Index; Academic Press: San Diego, 1998. (e)
Gordon, E. M.; Kerwin, J. F., Jr. Combinatorial Chemistry and Molecular
DiVersity in Drug DiscoVery; Wiley-Liss: New York, 1998. (f) Obrecht,
D.; Villalgordo, J. M. Solid-Supported Combinatorial and Parallel Synthesis
of Small-Molecular-Weight Compound Libraries; Tetrahedron Organic
Chemistry Series, Vol. 17; Baldwin, J. E., Williams, R. M., Eds.;
Pergamon: Oxford, 1998. (g) Terrett, N. K. Combinatorial Chemistry;
Oxford University Press: Oxford, 1998. (h) Combinatorial Chemistry and
Technology: Principles, Methods, and Applications; Miertus, S., Fassina,
G., Eds.; Dekker: New York, 1999. (i) Annual Reports in Combinatorial
Chemistry and Molecular DiVersity, Vol 2; Moos, W. H., Pavia, M. R.,
Eds.; Kluwer: Dordrecht, Netherlands, 1999. (j) Combinatorial Chemis-
try: Synthesis, Analysis, Screening; Jung, G., Ed.; Wiley-VCH: Weinheim,
1999. (k) Combinatorial Chemistry: A Practical Approach; Bannwarth,
W., Felder, E., Eds.; Wiley-VCH: Weinheim, 2000. (l) Fenniri, H.
Combinatorial Chemistry: A Practical Approach; Oxford University
Press: Oxford, 2000. (m) Beck-Sickinger, A.; Weber, P. Combinatorial
Strategies in Biology and Chemistry; Wiley: Chichester, U.K., 2002. (n)
Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials;
Nicolaou, K. C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH: Weinheim,
2002; 2 vols. (o) Sanchez-Martin, R. M.; Mittoo, S.; Bradley, M. Curr.
Top. Med. Chem. 2004, 4, 653-669. (p) Dolle, R. E. J. Comb. Chem. 2005,
7, 739-798 and earlier cited “Comprehensive Survey(s) of Combinatorial
Library Synthesis”.
(
4) Examples of simple R-alkyl-R-amino-γ-lactams: (a) Holladay, M, W.;
Nadzan, A. M. J. Org. Chem. 1991, 56, 3900-3905. (b) Sasaki, H.;
Carreira, E. M. Synthesis 2000, 135-138. (c) Dolbeare, K.; Pontoriero, G.
F.; Gupta, S. K.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 2003, 46,
7
27-733. (d) Duan, J. J.-W.; Lu, Z.; Xue, C.-B.; He, X.; Seng, J. L.;
Roderick, J. J.; Wasserman, Z. R.; Liu, R.-Q.; Covington, M. B.; Magolda,
R. L.; Newton, R. C.; Trzaskos, J. M.; Decicco, C. P. Bioorg. Med. Chem.
Lett. 2003, 13, 2035-2040. (e) Scott, W. L.; Alsina, J.; Kennedy, J. H.;
O’Donnell, M. J. Org. Lett. 2004, 6, 1629-1632. (f) Kyei, A. S.;
Tchabanenko, K.; Baldwin, J. E.; Adlington, R. M. Tetrahedron Lett. 2004,
4
5, 8931-8934. (g) Raghavan, B.; Johnson, R. L. J. Org. Chem. 2006, 71,
2
151-2154.
(
5) Early references and recent examples of R-alkyl-R-amino-γ-lactams
containing a C-terminal R-amino acid residue (R-alkyl dipeptide mimet-
ics): (a) Freidinger, R. M. J. Org. Chem. 1985, 50, 3631-3633. (b)
Thaisrivongs, S.; Pals, D. T.; Turner, S. R.; Kroll, L. T. J. Med. Chem.
1
988, 31, 1369-1376. (c) Hinds, M. G.; Richards, N. G. J.; Robinson, J.
A. Chem. Commun. 1988, 1447-1449. (d) Zydowsky, T. M.; Dellaria, J.
F., Jr.; Nellans, H. N. J. Org. Chem. 1988, 53, 5607-5616. (e) Hinds, M.
G.; Welsh, J. H.; Brennand, D. M.; Fisher, J.; Glennie, M. J.; Richards, N.
G. J.; Turner, D. L.; Robinson, J. A. J. Med. Chem. 1991, 34, 1777-1789.
(
f) Acton, J. J., III; Jones, A. B. Tetrahedron Lett. 1996, 37, 4319-4322.
(8) Reviews, early references, and recent examples of cyclitive cleavage: (a)
Review: P a´ tek, M.; Lebl, M. Biopolymers (Peptide Science) 1998, 47, 353-
363. (b) Review: Park, K. H.; Kurth, M. J. Drugs of the Future 2000, 25,
1265-1294. (c) Review: Guillier, F.; Orain, D.; Bradley, M. Chem. ReV.
2000, 100, 2091-2157. (d) Maeji, N. J.; Bray, A. M.; Geysen, H. M. J.
Immunol. Methods 1990, 134, 23-33. (e) Osapay, G.; Taylor, J. W. J.
Am. Chem. Soc. 1990, 112, 6046-6051. (f) Osapay, G.; Profit, A.; Taylor,
J. W. Tetrahedron Lett. 1990, 31, 6121-6124. (g) Nishino, N.; Xu, M.;
Mihara, H.; Fujimoto, T.; Ohba, M.; Ueno, Y.; Kumagai, H. Chem.
Commun. 1992, 180-181. (h) Xu, M.; Nishino, N.; Mihara, H.; Fujimoto,
T.; Izumiya, N. Chem. Lett. 1992, 191-194. (i) Huang, Z.; He, Y.-B.;
Raynor, K.; Tallent, M.; Reisine, T.; Goodman, M. J. Am. Chem. Soc. 1992,
114, 9390-9401. (j) DeWitt, S. H.; Kiely, J. S.; Stankovic, C. J.; Schroeder,
M. C.; Reynolds Cody, D. M.; Pavia, M. R. Proc. Natl. Acad. Sci. U.S.A.
1993, 90, 6909-6913. (k) Richter, L. S.; Tom, J. Y. K.; Burnier, J. P.
Tetrahedron Lett. 1994, 35, 5547-5550. (l) Mihara, H.; Yamabe, S.;
Niidome, T.; Aoyagi, H. Tetrahedron Lett. 1995, 36, 4837-4840. (m)
Scicinski, J. J.; Barker, M. D.; Murray, P. J.; Jarvie, E. M. Bioorg. Med.
Chem. Lett. 1998, 8, 3609-3614. (n) Xiao, X.-Y.; Nova, M. P.; Czarnik,
A. W. J. Comb. Chem. 1999, 1, 379-382. (o) Yang, L.; Morriello, G.
Tetrahedron Lett. 1999, 40, 8197-8200. (p) Albericio, F.; Garcia, J.;
Michelotti, E. L.; Nicol a´ s, E.; Tice, C. M. Tetrahedron Lett. 2000, 41,
3161-3163. (q) Berst, F.; Holmes, A. B.; Ladlow, M.; Murray, P. J.
Tetrahedron Lett. 2000, 41, 6649-6653. (r) Berst, F.; Holmes, A. B.;
Ladlow, M. Org. Biomol. Chem. 2003, 1, 1711-1719.
(
g) Guzzo, P. R.; Trova, M. P.; Inghardt, T.; Linschoten, M. Tetrahedron
Lett. 2002, 43, 41-43. (h) Millet, R.; Goossens, L.; Bertrand-Caumont,
K.; Houssin, R.; Rigo, B.; Goossens, J.-F.; H e´ nichart, J.-P. Lett. Pept. Sci.
2
001, 7, 269-279. (i) Sharma, S. K.; Ramsey, T. M.; Chen, Y.-N. P.; Chen,
W.; Martin, M. S.; Clune, K.; Sabio, M.; Bair, K. W. Bioorg. Med. Chem.
Lett. 2001, 11, 2449-2452. (j) Simpson, J. C.; Ho, C.; Berkley Shands, E.
F.; Gershengorn, M. C.; Marshall, G. R.; Moeller, K. D. Bioorg. Med. Chem.
2
002, 10, 291-302. (k) Reference 4e. (l) Purandare, A. V.; Wan, H.; Laing,
N.; Benbatoul, K.; Vaccaro, W.; Poss, M. A. Bioorg. Med. Chem. Lett.
2
004, 14, 4701-4704. (m) Guti e´ rrez-Rodr ´ı guez, M.; Garc ´ı a-L o´ pez, M. T.;
Herranz, R. Tetrahedron 2004, 60, 5177-5183. (n) Bittermann, H.;
Einsiedel, J.; H u¨ bner, H.; Gmeiner, P. J. Med. Chem. 2004, 47, 5587-
5
590. (o) Guti e´ rrez-Rodr ´ı guez, M.; Mart ´ı n-Mart ´ı nez, M.; Garc ´ı a-L o´ pez,
M. T.; Herranz, R.; Cuevas, F.; Polanco, C.; Rodr ´ı guez-Campos, I.;
Manzanares, I.; C a´ rdenas, F.; Feliz, M.; Lloyd-Williams, P.; Giralt, E. J.
Med. Chem. 2004, 47, 5700-5712. (p) Harris, P. W. R.; Brimble, M. A.;
Muir, V. J.; Lai, M. Y. H.; Trotter, N. S.; Callis, D. J. Tetrahedron 2005,
6
1, 10018-10035. (q) Kelleher, F.; Kelly, S. Tetrahedron Lett. 2006, 47,
3
005-3008.
(
6) Selected reviews concerning the parent amino acid aldehyde (“aspartalde-
hyde,” aspartic acid â-semialdehyde, 3-formylalanine, 2-amino-4-oxobutyric
acid) and related derivatives: (a) Meffre, P. Amino Acids 1998, 16, 251-
2
2
72. (b) Constantinou-Kokotou, V.; Magrioti, V. Amino Acids 2003, 24,
31-243.
7078 J. AM. CHEM. SOC.
9
VOL. 129, NO. 22, 2007