The authors thank National EPR facility, School of Chemistry,
The University of Manchester, for providing the facility and
Dr J. Hawkett for his time to run the samples. The authors
also thank Dr C. Muryan, School of Chemistry, The
University of Manchester, for helping them to run the samples
in SASX. MH thanks the Centre for Research-informed
Teaching, University of Central Lancashire, for providing
the summer internship in 2009–2010. The authors also thank
Dr Jenny Readman who helped MH to run XRF.
Notes and references
1 B. Vladimir, Oxidation of Alkanes, Alkenes and Alcohols catalyzed
by Transition Metal Complexes, PhD Thesis, University of
Neuchatel, Romakh, 2006.
2 P. K. Khatri, B. Singh, S. L. Jain, B. Sain and A. K. Sinha, Chem.
Commun., 2011, 47, 1610.
3 L. Muylaert, M. Borgers, E. Bruneel, J. Schaubroeck, F. Verpoort
and P. Van Der Voort, Chem. Commun., 2008, 4475.
4 V. Conte and B. Floris, Inorg. Chim. Acta, 2010, 363, 1935.
5 O. S. N. Sum, J. Feng, X. Hu and P. L. Yue, Chem. Eng. Sci., 2004,
59, 5269.
6 K. V. Bineesh, D. K. Kim, H. J. Cho and D. W. Park, J. Ind. Eng.
Chem., 2010, 16, 593.
7 T. Sen, P. R. Rajamohanan, S. Ganapathy and S. Sivasanker,
J. Catal., 1996, 163, 354.
8 T. Sen, M. Chatterjee and S. Sivasanker, J. Chem. Soc., Chem.
Commun., 1995, 207.
9 T. Sen, V. Ramaswamy, P. R. Rajamohanan, S. Ganapathy and
S. Sivasanker, J. Phys. Chem., 1996, 100, 3809.
10 D. Dzwigaj, M. J. Peltre, P. Massiani, A. Davidson, M. Che,
T. Sen and S. Sivasanker, Chem. Commun., 1998, 87.
11 M. Leon, J. Jimenez-Jimenez, A. Jimenez-Lopez, E. Eodriguez-
Castellon, D. Soriano and J. M. L. Nieto, Solid State Sci., 2010,
12, 996.
12 D. Wei, W. Chueh and G. Haller, Catal. Today, 1999, 51, 501.
13 B. T. Holland, C. F. Blanford and A. Stein, Science, 1998, 281, 538.
14 T. Sen, J. L. Casci, G. J. T. Tiddy and M. W. Anderson, Angew.
Chem., Int. Ed., 2003, 42, 4649.
15 T. Sen, J. L. Casci, G. J. T. Tiddy and M. W. Anderson, Chem.
Mater., 2004, 16, 2044.
16 T. Sen, A. Sebastianelli and I. J. Bruce, J. Am. Chem. Soc., 2006,
128, 7130.
17 T. Sen, I. J. Bruce and T. Mercer, Chem. Commun., 2010, 46, 6807.
18 A. Davidson and M. Che, J. Phys. Chem., 1992, 96, 9909.
19 P. R. H. Hariprasad Rao, A. V. Ramaswamy and P. Ratnasamy,
J. Catal., 1992, 137, 225.
Fig. 4 A comparative study of oxidation of cyclooctene to various
products using novel vanado-silicate catalyst (MH0.01/calcined) and
V-impregnated HOPS.
When MH0.01/calcined sample was used for the oxidation
of cyclooctene (see the method and reaction scheme,
Scheme S1, in ESIw), the novel hierarchically ordered porous
vanado-silicate (MH0.01/cal) exhibited a high conversion
(38.5%, see Fig. 4) with the product selectivity of cyclooctene
epoxide (24.8%) and cyclooctanone 2-ol (12.7%). The Turn
Over Number (TON) calculated based on the moles of
cyclooctene converted (38.5%) per mole of vanadyl species
present (1.16 Â 10À6 moles in 0.1 g catalyst) in the calcined
MH0.01 was 3019. The TON value for the present system is
exceptionally high compared to the TON value reported7,20
for vanadyl species in MEL and MFI zeolite systems for
oxidation of toluene. A poor conversion (o0.1%) of cyclooctene
was observed when V-impregnated HOPS was used for similar
reaction.
In conclusion, a template assisted hierarchically ordered porous
vanado-silica nanocomposite has been fabricated and used for
the oxidation of a bulky organic molecule (cyclooctene). The
exceptionally high TON of the vanadium species in the
hierarchically ordered porous vanado-silicate for the oxidation
of cyclooctene makes this material a potential catalyst for
many important oxidation catalyses in the near future under
heterogeneous conditions.
20 S. Kannan, T. Sen and S. Sivasanker, J. Catal., 1997, 170, 304.
c
4234 Chem. Commun., 2012, 48, 4232–4234
This journal is The Royal Society of Chemistry 2012