4922 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 15
Clausen et al.
(22) Jin, R.; Banke, T. G.; Mayer, M. L.; Traynelis, S. F.; Gouaux, E.
Structural basis for partial agonist action at ionotropic glutamate
receptors. Nat. Neurosci. 2003, 6, 803–810.
(23) Frandsen, A.; Pickering, D. S.; Vestergaard, B.; Kasper, C.;
Nielsen, B. B.; Greenwood, J. R.; Campiani, G.; Fattorusso, C.;
Gajhede, M.; Schousboe, A.; Kastrup, J. S. Tyr702 is an important
determinant of agonist binding and domain closure of the ligand-
binding core of GluR2. Mol. Pharmacol. 2005, 67, 703–713.
(24) Brehm, L.; Greenwood, J. R.; Hansen, K. B.; Nielsen, B.; Egebjerg,
(37) Braitman, D. J.; Coyle, J. T. Inhibition of [3H]kainic acid receptor
binding by divalent cations correlates with ion affinity for the
calcium channel. Neuropharmacology 1987, 26, 1247–1251.
(38) Sills, M. A.; Fagg, D.; Pozza, M.; Angst, C.; Brundish, D. E.; Hurt,
S. D.; Wilusz, E. J.; Williams, M. [3H]CGP 39653: a new N-methyl-
D-aspartate antagonist radioligand with low nanomolar affnity in
rat brain. Eur. J. Pharmacol. 1991, 192, 19–24.
(39) Hermit, M. B.; Greenwood, J. R.; Nielsen, B.; Bunch, L.; Jorgensen,
e
C. G.; Vestergaard, H. T.; Stensbol, T. B.; Sanchez, C.; Krogsgaard-
e
J.; Stensbol, T. B.; Brauner-Osborne, H.; Sløk, F. A.; Kronborg,
Larsen, P.; Madsen, U.; Brauner-Osborne, H. Ibotenic acid and
thioibotenic acid: a remarkable difference in activity at group III
metabotropic glutamate receptors. Eur. J. Pharmacol. 2004, 486, 241–
250.
e
T. T. A.; Krogsgaard-Larsen, P. (S)-2-Amino-3-(3-hydroxy-7,8-
dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid, a potent
and selective agonist at the GluR5 subtype of ionotropic glutamate
receptors. Synthesis, modeling, and molecular pharmacology. J.
Med. Chem. 2003, 46, 1350–1358.
(40) Ransom, R. W.; Stec, N. L. Cooperative modulation of
[3H]MK801 binding to the N-methyl-D-aspartate receptor ion
channel complex by L-glutamate, glycine and polyamines. J. Neu-
rochem. 1988, 51, 830–836.
(41) Vogensen, S. B.; Clausen, R. P.; Greenwood, J. R.; Johansen,
T. N.; Pickering, D. S.; Nielsen, B.; Ebert, B.; Krogsgaard-Larsen,
P. Convergent synthesis and pharmacology of substituted tetra-
zolyl-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid
analogues. J. Med. Chem. 2005, 48, 3438–3442.
(42) Sagot, E.; Pickering, D. S.; Pu, X.; Umberti, M.; Stensbol, T. B.;
Nielsen, B.; Chapelet, M.; Bolte, J.; Gefflaut, T.; Bunch, L. Chemo-
enzymatic synthesis of a series of 2,4-syn-functionalized (S)-gluta-
mate analogues: new insight into the structure-activity relation of
ionotropic glutamate receptor subtypes 5, 6, and 7. J. Med. Chem.
2008, 51, 4093–4103.
(25) Krogsgaard-Larsen, P.; Nielsen, E. O.; Curtis, D. R. Ibotenic acid
e
analogs;synthesis and biological and in vitro activity of confor-
mationally restricted agonists at central excitatory amino acid
receptors. J. Med. Chem. 1984, 27, 585–591.
(26) Nielsen, B. B.; Pickering, D. S.; Greenwood, J. R.; Brehm, L.;
Gajhede, M.; Schousboe, A.; Kastrup, J. S. Exploring the GluR2
ligand-binding core in complex with the bicyclical AMPA analogue
(S)-4-AHCP. FEBS J. 2005, 272, 1639–1648.
(27) Borowitz, I. J.; Bandurco, V.; Beller, H.; Williams, G. J.; Suciu, N.;
Gross, L.; Rigby, R. D. G.; Kurland, D. Medium ring compounds
0.7. Synthesis of 2-methyl-7-ketoundecanolide, 8-ketoundecano-
lide, and 2,4,6-trimethyl-7-ketodecanolide. J. Org. Chem. 1972, 37,
581–588.
(28) Jackson, R. F. W.; Moore, R. J.; Dexter, C. S.; Elliot, J.; Mowbray,
C. E. Concise synthesis of enantiomerically pure phenylalanine,
homophenylalanine, and bishomophenylalanine derivatives using
organozinc chemistry: NMR studies of amino acid-derived orga-
nozinc reagents. J. Org. Chem. 1998, 63, 7875–7884.
(29) Siebum, A. H. G.; Woo, W. S.; Raap, J.; Lugtenburg, J. Access to
any site-directed isotopomer of methionine, selenomethionine,
cysteine, and selenocysteine;use of simple, efficient modular
synthetic reaction schemes for isotope incorporation. Eur. J. Org.
Chem. 2004, 2905–2913.
(30) Strange, M.; Brauner-Osborne, H.; Jensen, A. A. Functional
characterisation of homomeric ionotropic glutamate receptors
GluR1-GluR6 in a fluorescence-based high throughput screening
assay. Comb. Chem. High Throughput Screening 2006, 9, 147–158.
(31) Nielsen, M. M.; Liljefors, T.; Krogsgaard-Larsen, P.; Egebjerg, J.
The Selective Activation of the Glutamate Receptor GluR5
by ATPA Is Controlled by Serine 741. Mol. Pharmacol. 2003, 63,
19–25.
(43) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data
collected in oscillation mode. Macromol. Crystallogr., Part A 1997,
276, 307–326.
(44) Perrakis, A.; Morris, R.; Lamzin, V. S. Automated protein model
building combined with iterative structure refinement. Nat. Struct.
Biol. 1999, 6, 458–463.
(45) Emsley, P.; Cowtan, K. Coot: model-building tools for molecular
graphics. Acta Crystallogr., Sect D: Biol. Crystallogr. 2004, 60,
2126–2132.
(46) Brunger, A. T.; Adams, P. D.; Clore, G. M.; Delano, W. L.; Gros,
P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.;
Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L.
Crystallography & NMR system: a new software suite for macro-
molecular structure determination. Acta Crystallogr., Sect D: Biol.
Crystallogr. 1998, 54, 905–921.
(47) Laskowski, R. A.; Macarthur, M. W.; Moss, D. S.; Thornton, J. M.
Procheck;A Program to Check the Stereochemical Quality of
Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291.
(48) Hayward, S.; Lee, R. A. Improvements in the analysis of domain
motions in proteins from conformational change: DynDom ver-
sion 1.50. J. Mol. Graph. Model. 2002, 21, 181–183.
(32) Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. Role of
the active-site solvent in the thermodynamics of factor Xa ligand
binding. J. Am. Chem. Soc. 2008, 130, 2817–2831.
(33) Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Motifs
for molecular recognition exploiting hydrophobic enclosure in
protein-ligand binding. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
808–813.
(34) Hald, H.; Naur, P.; Pickering, D. S.; Sprogoe, D.; Madsen, U.;
Timmermann, D. B.; Ahring, P. K.; Liljefors, T.; Schousboe, A.;
Egebjerg, J.; Gajhede, M.; Kastrup, J. S. Partial agonism and
antagonism of the ionotropic glutamate receptor iGluR5;Struc-
tures of the ligand-binding core in complex with domoic acid and
2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propio-
nic acid. J. Biol. Chem. 2007, 282, 25726–25736.
(35) Frandsen, A.; Pickering, D. S.; Vestergaard, B.; Kasper, C.;
Nielsen, B. B.; Greenwood, J. R.; Campiani, G.; Fattorusso, C.;
Gajhede, M.; Schousboe, A.; Kastrup, J. S. Tyr702 is an important
determinant of agonist binding and domain closure of the ligand-
binding core of GluR2. Mol. Pharmacol. 2005, 67, 703–713.
(36) Honore, T.; Nielsen, M. Complex structure of quisqualate-sensi-
tive glutamate receptors in rat cortex. Neurosci. Lett. 1985, 54,
27–32.
(49) Delano, W. L. The PyMOL Molecular Graphics System; Delano
Scientific: San Carlos, CA, 2002.
(50) Schrodinger Suite 2008; Schrodinger LLC: 101 SW Main Street, Suite
1300, Portland, OR 97204, 2008.
(51) Desmond 2.0; D. E. Shaw Research LLC: 120 West 45th Street, 39th
Floor, New York, NY 10036, 2008.
(52) Vogensen, S. B.; Greenwood, J. R.; Varming, A. R.; Brehm, L.;
Pickering, D. S.; Nielsen, B.; Liljefors, T.; Clausen, R. P.; Johansen,
T. N.; Krogsgaard-Larsen, P. A stereochemical anomaly: the
cyclised (R)-AMPA analogue (R)-3-hydroxy-4,5,6,7-tetrahydro-
isoxazolo[5,4-c]pyridine-5-carboxylic acid [(R)-5-HPCA] resem-
bles (S)-AMPA at glutamate receptors. Org. Biomol. Chem. 2004,
2, 206–213.
(53) Stensbol, T. B.; Borre, L.; Johansen, T. N.; Egebjerg, J.; Madsen,
e
U.; Ebert, B.; Krogsgaard-Larsen, P. Resolution, absolute stereo-
chemistry and molecular pharmacology of the enantiomers of
ATPA. Eur. J. Pharmacol. 1999, 380, 153–162.
(54) Kleywegt, G. J.; Jones, T. A. Phi/psi-chology: Ramachandran
revisited. Structure 1996, 4, 1395–1400.