10540
J. Chem. Phys., Vol. 121, No. 21, 1 December 2004
Knippenberg et al.
TZVP provided the most physically reasonable representa-
tion of the NBA wave function. Molecular property informa-
tion derived from this ‘‘optimum’’ BP/TZVP wave function
was seen to be in generally good agreement with the results
from independent measurements. This provides compelling
evidence for the pedigree of EMS in a priori evaluation of a
quantum chemical wave function. For a molecule such as
NBA, where unambiguous molecular geometry information
is not readily available from traditional methods, this can be
particularly useful.
Our next major study will concentrate on the valence
electronic structure of norbornene (C7H10 , NBN). We pro-
pose this investigation in order to probe how the electronic
structure of the chemically similar nonbonnadione ͑C7H8,
NBD, NBN, and NBA molecules changes as the double
bonds of NBD are progressively saturated. That study will
search for any discernible trends, particularly in the momen-
tum distributions, and if so can we quantify them in a logical
manner.
Finally, the present work highlights the need for imple-
menting more efficient diagonalization approaches that pre-
serve the total spectral moments for exhaustively studying
with larger basis sets the innermost correlation tails in the
1p-GP/ADC͑3͒ ionization spectra. Also, we note that an im-
provement in the (e,2e) reaction mechanism description,
particularly for the inner valence and core orbitals, by the
development of a distorted wave framework9 for multicen-
tred targets ͑i.e., molecules͒ is still desirable. While this is a
very difficult task, a clear need for its implementation exists.
11 P. Bischof, J. A. Hashmall, E. Heilbronner, and V. Harnung, Helv. Chim.
Acta 52, 1745 ͑1969͒.
M. Getzlaff and G. Schonhense, J. Electron Spectrosc. Relat. Phenom. 95,
12
¨
225 ͑1998͒.
13 G. Bieri, F. Burger, E. Heilbronner, and J. P. Maier, Helv. Chim. Acta 60,
2213 ͑1977͒.
14 N. Bodor, M. J. S. Dewar, and S. D. Worley, J. Am. Chem. Soc. 92, 19
͑1970͒.
15 H. Mackenzie-Ross, M. J. Brunger, F. Wang, W. Adcock, N. Trout, I. E.
McCarthy, and D. A. Winkler, J. Electron Spectrosc. Relat. Phenom. 123,
389 ͑2002͒.
16 H. Mackenzie-Ross, M. J. Brunger, F. Wang et al., J. Phys. Chem. A 106,
9573 ͑2002͒.
17 F. Wang, M. J. Brunger, and D. A. Winkler, J. Phys. Chem. Solids ͑to be
published͒.
18 R. Bicker, H. Kessler, and G. Zimmermann, Chem. Ber. 111, 3200 ͑1978͒.
19 I. E. McCarthy and E. Weigold, Rep. Prog. Phys. 54, 789 ͑1991͒.
20 P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis
for the Physical Sciences ͑McGraw-Hill, New York, 1990͒.
21 I. E. McCarthy and E. Weigold, Rep. Prog. Phys. 51, 299 ͑1988͒.
22 M. Casida, Phys. Rev. A 51, 2005 ͑1995͒.
23 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 ͑1965͒.
24 A. D. Becke, Phys. Rev. A 38, 3098 ͑1988͒.
25 A. D. Becke, J. Chem. Phys. 88, 2547 ͑1988͒.
26 J. P. Perdew, Phys. Rev. B 33, 8822 ͑1986͒.
27 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 ͑1988͒.
28 J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 ͑1992͒.
29 A. Komornicki and G. J. Fitzgerald, J. Chem. Phys. 98, 1398 ͑1993͒.
30 M. T. Michalewicz, M. J. Brunger, I. E. McCarthy, and V. M. Norling, in
Proceedings of the CRAY Users Group, edited by R. Shaginaw ͑1995͒, pp.
37–41.
31 M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., J. Comput. Chem. 14,
1347 ͑1993͒.
32 S. Hamel, P. Duffy, M. Casida, and D. R. Salahub, J. Electron Spectrosc.
Relat. Phenom. 123, 345 ͑2002͒.
33 L. Frost and E. Weigold, J. Phys. B 15, 2531 ͑1982͒.
34 W. Adcock, M. J. Brunger, C. I. Clark, I. E. McCarthy, M. T. Michalewicz,
W. von Niessen, E. Weigold, and D. A. Winkler, J. Am. Chem. Soc. 119,
2896 ͑1997͒.
ACKNOWLEDGMENTS
35 W. Adcock, M. J. Brunger, I. E. McCarthy, M. T. Michalewicz, W. von
Niessen, F. Wang, and E. Weigold, J. Am. Chem. Soc. 122, 3892 ͑2000͒.
36 N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem.
70, 560 ͑1992͒.
This work was supported in part by the Australian Re-
search Council, and we thank Ms. Marilyn Mitchell for typ-
ing the manuscript. One of us ͑W.R.N.͒ acknowledges
Flinders University for his visiting research fellowship,
while another ͑K.L.N.͒ thanks the Ferry Trust for her schol-
arship. F.W. acknowledges the Australian Partnership for Ad-
vanced Computing ͑APAC͒ for use of their facilities. M.S.D.,
S.K., and J.P.F. acknowledge financial support from the
Bijzonder Onderzoeks Fonds ͑BOF͒ of the Limburgs Univer-
sitair Centrum, and from the Fonds voor Wetenschappelijk
OnderzoekគVlaanderen ͑FWO͒ of the Flemish Branch of the
National Scientific Foundation of Belgium. M.S.D. is in-
debted to Professor L. S. Cederbaum, University of Heidel-
berg, for useful discussions on Green’s function theories.
37 B. I. Dunlap, J. W. D. Conolly, and J. R. Sabin, J. Chem. Phys. 71, 4993
͑1979͒.
38 A. D. Becke, J. Chem. Phys. 98, 5648 ͑1993͒.
39 J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28, 1237
͑1983͒.
40 W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comput. Phys. Rep. 1,
57 ͑1984͒.
41 J. Schirmer and G. Angonoa, J. Chem. Phys. 91, 1754 ͑1989͒.
42 H.-G. Weikert, H.-D. Meyer, L. S. Cederbaum, and F. Tarantelli, J. Chem.
Phys. 104, 7122 ͑1996͒.
43 T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 ͑1989͒.
44 M. S. Deleuze, Int. J. Quantum Chem. 93, 191 ͑2003͒.
45 F. Tarantelli, A. Sgamellotti, L. S. Cederbaum, and J. Schirmer, J. Chem.
Phys. 86, 2201 ͑1987͒.
46 L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205 ͑1977͒.
47 V. G. Zakrewski and W. von Niessen, J. Comput. Chem. 14, 13 ͑1993͒.
48 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision
A.7, Gaussian Inc., Pittsburgh, MA, 1998; GAUSSIAN 03 ͑Gaussian Inc.,
Pittsburgh, MA, 2003͒.
1 C.-Y. Zhao, Y. Zhang, and X.-Z. You, J. Phys. Chem. A 101, 5174 ͑1997͒.
2 Y. Morino, K. Kutchitsu, and A. Yokozeki, Bull. Chem. Soc. Jpn. 40, 1552
͑1967͒.
3 A. Choplin, Chem. Phys. Lett. 71, 503 ͑1980͒.
4 J. F. Chiang, C. F. Wilcox, and S. H. Bauer, J. Am. Chem. Soc. 90, 3149
͑1968͒.
49 R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96,
6796 ͑1992͒.
5 A. N. Fitch and H. Jobic, J. Chem. Soc., Chem. Commun. 1993 1516.
6 L. Doms, L. van den Enden, H. J. Geise, and C. van Alsenoy, J. Am.
Chem. Soc. 105, 158 ͑1983͒.
50 M. S. Deleuze, J. Delhalle, B. T. Pickup, and S. Svensson, J. Am. Chem.
Soc. 116, 10715 ͑1994͒.
51 M. S. Deleuze and L. S. Cederbaum, J. Chem. Phys. 105, 7583 ͑1996͒.
52 A. Golod, M. S. Deleuze, and L. S. Cederbaum, J. Chem. Phys. 110, 6014
͑1999͒.
7 N. L. Allinger, H. J. Geise, W. Pyckhout, L. A. Paquette, and J. C. Gal-
lucci, J. Am. Chem. Soc. 111, 1106 ͑1989͒.
8 J. Walkimar, J. W. Carneiro, P. R. Seidl, G. R. Tostes, and C. A. Taft, J.
Mol. Struct.: THEOCHEM 152, 281 ͑1987͒.
53 M. S. Deleuze, W. N. Pang, A. Salam, and R. C. Shang, J. Am. Chem. Soc.
123, 4049 ͑2001͒.
9 E. Weigold and I. E. McCarthy, Electron Momentum Spectroscopy ͑Klu-
wer Academic/Plenum, New York, 1999͒.
54 Y. Zheng, W. N. Pan, R. C. Shang, X. J. Chen, C. E. Brion, T. K. Ghanty,
and E. R. Davidson, J. Chem. Phys. 111, 9526 ͑1999͒.
10 M. J. Brunger and W. Adcock, J. Chem. Soc., Perkin Trans. 2 2002, 1.