135
Catal. 2005, 347, 329–338. (e) Helms, B.; Fréchet,
J.M.J. Adv. Synth. Catal. 2006, 348, 1125–1148. Recent
reports: (f) Wang, Z.-J; Deng, G.-J.; Yong, L.; He, Y.-
M.; Tang, W.-J.; Fan, Q.-H. Org. Lett. 2007, 9, 1243–
1246. (g) Ouali, A.; Laurent, R.; Caminade, A.M.; Ma-
joral, J.-P.; Taillefer, M. J. Am. Chem. Soc. 2006, 128,
15990–15991. (h) van de Coevering, R.; Alfers, A.P.;
Meeldiijk, J.D.; Martinez-Viviente, E.; Pregosin, P.S.;
Klein Gebbink, R.J.M.; van Koten, G. J. Am. Chem.
Soc. 2006, 128, 12700–12713. (i)Abu-Reziq, R.;Alper,
H.; Wang, D.; Post, M.L. J. Am. Chem. Soc. 2006, 128,
5279–5282.
ciency was identified in the first dendrimer type, the “R”
series, and suggested that the outer layers of aromatic
residues contributed positively to catalysis.
In the present study, we exchanged the catalytic
machinery in these dendrimers by replacing the pair
of arginine residues useful for binding with a pair of
histidine residues, so as to obtain the same combina-
tion as that found in the second, “H” series dendrimers.
The exchange produced two new dendrimers, RG3H
and RMG3H, which display higher catalytic activity
at pH 5.5, with rate accelerations up to kcat/kuncat = 1500.
These new dendrimers also possess a lower hydrody-
namic radius as determined by diffusion NMR and a
higher compaction factor, which is similar to a folded
protein. By contrast, introducing arginine residues at
G1 in the “H” series dendrimers to form HG3R and
HMG3R gave generally less active dendrimers com-
pared to HG3 and HMG3.
While the catalytic efficiency of our single-site es-
terase dendrimers for hydrolyzing acyloxypyrene tri-
sulfonates is primarily determined by the nature of the
catalytic residues in the active site, their combination
with aromatic amino acids in the outer shells seems in-
strumental in obtaining enhanced catalytic efficiencies.
Future effort will address core active site dendrimers
with enhanced enzyme-like catalytic activities through
efficient high-throughput screening of new libraries.
The exploration of peptide dendrimers as synthetic en-
zyme models provides an uprecedented opportunity to
explore fundamental aspects of enzyme design.
(3) (a) Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.;
Royo, M.; Albericio, F. Chem. Rev. 2005, 105, 1663–
1681. (b) Sadler, K.; Tam, J.P. Rev. Mol. Biotechnol.
2002, 90, 195–229. (c) Darbre, T.; Reymond, J.-L. Acc.
Chem. Res. 2006, 39, 925–934.
(4) (a) Kirby, A.J. Angew. Chem., Int. Ed. 1996, 35, 706–
724. (b) Woggon, W.–D. Acc. Chem. Res. 2005, 38,
127–136. (c) Motherwell, W.B.; Bingham, M.J.; Six,
Y. Tetrahedron 2001, 57, 4663–4686. (d) Breslow, R.;
Zhang, X.; Huang, Y. J. Am. Chem. Soc. 1997, 119,
4535–4536. (e) Breslow, R.; Huang, Y.; Zhang, X.;
Yang, J. Proc. Natl. Acad. Sci. USA 1997, 94, 11156–
11158.
(5) (a) Clouet, A.; Darbre, T.; Reymond, J.-L. Angew.
Chem., Int. Ed. 2004, 43, 4612-4615. (b) Clouet, A.;
Darbre, T.; Reymond, J.-L. Biopolymers 2006, 84, 114-
123.
(6) (a) Esposito, A.; Delort, E.; Lagnoux, D.; Djojo, F.;
Reymond, J.-L. Angew. Chem., Int. Ed. 2003, 42, 1381–
1383. (b) Lagnoux, D.; Delort, E.; Douat-Casassus, C.;
Esposito, A.; Reymond, J.-L. Chem. Eur. J. 2004, 10,
1215–1226. (c) Douat-Casassus, C.; Darbre, T.; Rey-
mond, J.-L. J. Am. Chem. Soc. 2004, 126, 7817–7826.
(d) Clouet, A.; Darbre, T.; Reymond, J.-L. Adv. Synth.
Catal. 2004, 346, 1195–1204.
Acknowledgments. This work was supported financially by the
University of Berne, the Swiss National Science Foundation,
and the Marie Curie Training Network IBAAC.
(7) Kofoed, J.; Darbre, T.; Reymond, J.-L. Org. Biomol.
Chem. 2006, 3268–3281.
REfEREncEs And notEs
(1) (a) Newkome, G.R.; Moorefield, C.N.; Vögtle, F. Den-
dritic Molecules: Concepts, Synthesis, Applications;
VCH: Weinheim, 2001. (b) Tomalia, D.A.; Dvornic,
P.R. Nature 1994, 372, 617–618. (c) Smith, D.K.; Die-
derich, F. Top. Curr. Chem. 2000, 210, 183–227. (d)
Helms, B.; Fréchet, J.M.J. Adv. Synth. Catal. 2006, 348,
1125–1148. (e) Smith, D.K.; Diederich, F. Chem. Eur.
J. 1998, 4, 1353–1361. (f) Liang, C.; Fréchet, J.M.J.
Prog. Polym. Sci. 2005, 30, 385–402. Grayson, S.M.;
Fréchet, J.M.J. Chem. Rev. 2001, 101, 3819–3868. (g)
Lee, C.C.; Mackay, J.A.; Fréchet, J.M.J.; Szoka, F.C.
Nat. Biotechnol. 2005, 23, 1517–1526.
(8) Sommer, P.; Uhlich, N.; Reymond, J.-L.; Darbre, T.
ChemBiochem 2008, 9, 689–693.
(9) (a) Kolomiets, E.; Johansson, E.M.V.; Renaudet, O.;
Darbre, T.; Reymond, J.-L. Org. Lett. 2007, 9, 1465–
1468. (b) Johansson, E.M.V.; Kolomiets, E.; Rosenau,
F.; Jäger, K.-E.; Darbre, T.; Reymond, J.-L. New J.
Chem. 2007, 31, 1291–1299. (c) Johansson, E.M.V.;
Crusz, S.A.; Kolomiets, E.; Buts, L.; Kadam, R.U.;
Cacciarini, M.; Bartels, K.-M.; Diggle, S.P.; Cámara,
M.; Williams, P.; Loris, R.; Nativi, C.; Rosenau, F.;
Jaeger, K.-E.; Darbre, T.; Reymond, J.-L. Chem. Biol.
2008, 15, 1249–1257.
(2) Reviews on catalysis with dendrimers: (a) Oosterom,
G.E.; Reek, J.N.; Kamer, P.C.; van Leeuwen, P.W. An-
gew. Chem., Int. Ed. 2001, 40, 1828–1849. (b) Twyman,
L.J.; King, A.S.; Martin, I.K. Chem. Soc. Rev. 2002,
31, 69–82. (c) Kofoed, J.; Reymond, J.-L. Curr. Opin.
Chem. Biol. 2005, 9, 656–664. (d) Astruc, D.; Heuze,
K.; Gatard, S.; Mery, D.; Nlate, S.; Plault, L. Adv. Synth.
(10) For early examples of catalytic polymers with imidaz-
ole groups: (a) Overberger, C.G.; Salamone, J.C. Acc.
Chem. Res. 1969, 2, 217–224. (b) Overberger, C.G.;
Mitra, S. Pure Appl. Chem. 1979, 51, 1391–1404. For
other examples and reviews: (c) Suh, J. Acc. Chem.
Res. 2003, 36, 562–570. (d) Benaglia, M.; Puglisi,
A.; Cozzi, F. Chem. Rev. 2003, 103, 3401–3429. (e)
Javor and Reymond / SAR in Esterase Peptide Dendrimers