D.J.M. de Vlieger et al. / Journal of Catalysis 292 (2012) 239–245
245
Fig. 7. Schematic representation of modified reaction pathways during aqueous reforming of ethylene glycol.
[6] E.C. Vagia, A.A. Lemonidou, Int. J. Hydrogen Energy 32 (2007) 212.
[7] R.R. Davda, J.A. Dumesic, Angew. Chem. Int. Ed. 42 (2003) 4068.
[8] D.J.M. de Vlieger, A.G. Chakinala, L. Lefferts, S.R.A. Kersten, K. Seshan, D.W.F.
Brilman, Appl. Catal. B 111–112 (2012) 536.
[9] J.W. Shabaker, G.W. Huber, J.A. Dumesic, J. Catal. 222 (2004) 180.
[10] A.O. Menezes, M.T. Rodrigues, A. Zimmaro, L.E.P. Borges, M.A. Fraga, Renew.
Energy 36 (2011) 595.
[11] B. Roy, K. Loganathan, H.N. Pham, A.K. Datye, C.A. Leclerc, Int. J. Hydrogen
Energy 35 (2010) 11700.
[12] A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A.A. Lemonidou, J.A. Lercher, J. Catal.
269 (2010) 411.
[13] R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, Appl. Catal.
B 56 (2005) 171.
gen yields involves dehydrogenation of ethylene glycol. Competi-
tion between dehydrogenation and isomerization of the adsorbed
intermediate to acetic acid determines the selectivity toward al-
kanes (and hence H2 yields). Addition of Ni to alumina-supported
Pt catalysts increased the dehydrogenation activity. As a conse-
quence, a decrease in the formation of alkanes and improved sta-
bility was accomplished by suppressing acetic acid formation.
4. Conclusions
[14] P.D. Vaidya, A.E. Rodrigues, Chem. Eng. J. 117 (2006) 39.
[15] A.L. Alberton, M.M.V.M. Souza, M. Schmal, Catal. Today 123 (2007) 257.
[16] D.L. Trimm, Catal. Today 37 (1997) 233.
[17] F. Frusteri, S. Freni, V. Chiodo, L. Sparado, G. Bonura, S. Cavallaro, J. Power Sour.
132 (2004) 139.
We identified methanol, ethanol, and acetic acid as the main li-
quid by-products during the reforming of ethylene glycol in hot-
compressed water in the presence of Al2O3-supported Pt and Pt–
Ni catalysts. Side-reactions involving these liquid by-products lead
to the formation of high amounts of methane. Acetic acid was
shown to be responsible for the deactivation of Pt and Pt–Ni cata-
lysts by hydroxylation of the Al2O3 surface. Re-deposition of the
dissolved alumina on the catalyst leads to the blocking of catalytic
Pt sites and hence the deactivation of the catalyst. The increased
dehydrogenation activity of the Pt–Ni catalyst was found to sup-
press the formation of acetic acid during ethylene glycol reforming
and thereby increasing the H2 selectivity and catalyst lifetime.
[18] V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S. Bouvot-Mauduit, C.
Mirodatos, J. Power Sour. 105 (2002) 26.
[19] K. Takanabe, K. Aika, K. Seshan, L. Lefferts, Chem. Eng. J. 120 (2006) 133.
[20] K.O. Christensen, D. Chen, R. Lodeng, A. Holmen, Appl. Catal. A 314 (2006) 9.
[21] O. Skoplyak, M.A. Barteau, J.G. Chen, Surf. Sci. 602 (2008) 3578.
[22] D.J.M. de Vlieger, D.B. Thakur, L. Lefferts, K. Seshan, Carbon nanotubes: A
promising catalyst support material for supercritical water gasification of
biomass waste, ChemCatChem, Accepted for publication, doi: 10.1002/cctc.
201200318.
[23] M. Osada, M. Watanabe, K. Sue, T. Adschiri, K. Arai, J. Supercrit. Fluids 28
(2004) 219.
[23] M. Osada, M. Watanabe, K. Sue, T. Adschiri, K. Arai, J. Supercrit. Fluids 28
(2004) 219.
Acknowledgments
[24] J. An, L. Bagnell, T. Cablewski, C.R. Strauss, R.W. Trainor, J. Org. Chem. 62 (1997)
2505.
[25] G.W. Huber, J.W. Shabaker, S.T. Evans, J.A. Dumesic, Appl. Catal. B 62 (2006)
226.
[26] A. Erdohelyi, J. Rasko, T. Kecskes, M. Toth, M. Dömök, K. Baan, Catal. Today 116
(2006) 367.
[27] S. Sa, H. Silva, L. Brandao, J.M. Sousa, A. Mendes, Appl. Catal. B 99 (2010) 43.
[28] S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36 (2003) 255.
[29] B. Matas Guell, I. Babich, K. Seshan, L. Lefferts, J. Catal. 257 (2008) 229.
[30] M.M.V.M. Souza, M. Schmal, Appl. Catal. A 281 (2005) 19.
[31] X. Hu, G. Lu, Appl. Catal. B 99 (2010) 289.
[32] A.C. Basagiannis, X.E. Verykios, Appl. Catal. B 82 (2008) 77.
[33] P.E. Savage, J. Supercrit. Fluid. 47 (2009) 407.
[34] H.D. Ruan, R.L. Frost, J.T. Kloprogge, J. Raman Spectrosc. 32 (2001) 745.
[35] A.B. Kiss, G. Keresztury, L. Farkas, Spectrochim. Acta A 36 (1980) 653.
[36] R.M. Ravenelle, J.R. Copeland, W.-G. Kim, J.C. Crittenden, C. Sievers, ACS Catal. 1
(2011) 552.
This project was supported by ACTS (Project Number
053.61.023). The authors greatly acknowledge Ing. Louise Vrielink
for BET and XRF analysis, Dr. Rico Keim for TEM-EDX imaging, Kar-
in Altena for dispersion measurements, Ing. Benno Knaken and Ing.
Bert Geerdink for technical support.
References
[1] A. Tanksale, J.N. Beltramini, G.M. Lu, Renew. Sustain. Energy Rev. 14 (2010)
166.
[2] R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418 (2002) 964.
[3] Y. Guo, S.Z. Wang, D.H. Xu, Y.M. Gong, H.H. Ma, X.Y. Tang, Renew. Sustain.
Energy Rev. 14 (2010) 334.
[4] L. Garcia, R. French, S. Czernik, E. Chornet, Appl. Catal. A 201 (2000) 225.
[5] S. Adhikari, S. Fernando, F. To, R. Bricka, P. Steele, A. Haryanto, Energy Fuel 22
(2008) 1220.
[37] J.A. Yopps, D.W. Feurstenau, J. Colloid Sci. 19 (1964) 61.
[38] B. Kasprzyk-Hordern, Adv. Colloid. Interfac. 110 (2004) 19.