106
NA, OKUHARA, AND MISONO
of Cs2.5. The decrease in protons by the introduction Pt
can be described in Eq. [5]; protons react with chloride ion,
which contains the starting material, H2PtCl6 to form HCl
during the preparation processes:
3. Adeeva, V., de Haan, J. W., Janchen, J., Schunemann, V., van de Ven,
L. T. M., Sachtler, W. M. H., and van Santen, R. A., J. Catal. 151, 364
(1995); Adeeva, V., Lei, G. D., and Sachtler, W. M. H., Catal. Lett. 33,
135 (1995).
4. Yaluris, G., Larson, R. B., Kobe, J. M., Gonzalez, M. R., Fogash,
K. B., and Dumesic, J. A., J. Catal. 158, 336 (1996).
5. Stocker, M., Hemmerbach, P., Rader, J. H., and Grepstad, J. K., Appl.
Catal. 25, 223 (1986).
nH+ + PtCl26ꢁ → [PtCl6ꢁn
]
(2ꢁn)ꢁ + nHCl.
[5]
4. Effect of Pt Particle Size on the Role
of Protons and Selectivity
6. Yori, J. C., Luy, J. C., and Parera, J. M., Appl. Catal. 46, 103 (1989).
7. Shigeishi, R., Garforth, A., Harris, I., and Dwyer, J., J. Catal. 130, 423
(1991).
The fact that the rate of hydrogenolysis increased as
the Pt particle size of Pt-Cs3 decreased is consistent with
the general trend of metallic catalysts (42). The selectivity
to isobutane also depended on the particle size of Pt of
H3(imp)/Pt-Cs3 (Table 6). By the addition of H3PW12O40 to
Pt-Cs3, the hydrogenolysis was more effectively suppressed
for smaller Pt particle (H3(imp)/Pt-Cs3), resulting in the
higher selectivity for the smaller Pt particle. This is probably
due to that the smaller particles (the higher dispersion) are
favorable to intimate interaction between Pt and protons.
As reported elsewhere (47), when Pt/SiO2 was physically
mixed with Cs2.5, the reaction rate increased greatly, but
the selectivity decreased. This suggests that close proximity
between the metal site and the acid site as in the case
of Pt-Cs2.5 is required for the selective isomerization of
n-butane.
8. Mechlor, A., Garbowski, E., Mathieu, M. V., and Primet, M., J. Chem.
Soc. Faraday Trans. I 82, 1893 (1986).
9. Na, K., Okuhara, T., and Misono, M., Chem. Lett., p. 1141 (1993).
10. Na, K., Okuhara, T., and Misono, M., J. Chem. Soc. Faraday Trans. 91,
367 (1995).
11. Gates, B. C., Katzer, J. R., and Schuit, G. C. A., in “Chemistry of
Catalytic Processes.” McGraw-Hill, New York, 1979.
12. Melchor, A., Garbowski, E., Mathieu, M. V., and Primet, M., J. Chem.
Soc. Faraday Trans. I 82, 1893 (1986).
13. Bernard, P., and Primet, M., J. Chem. Soc. Faraday Trans. 86, 3667
(1990).
14. Garin, F., Andriamasinoro, D., Abdulsamad, A., and Sommer, J., J.
Catal. 131, 199 (1991).
15. Hino, M., and Arata, K., Catal. Lett. 30, 25 (1995).
16. Coelho, M. A., Resasco, D. E., Sikabwe, E. C., and White, R. L., Catal.
Lett. 32, 253 (1995).
17. Jatia, A., Chang, C., Macleod, J. D., Okubo, T., and Davis, M. E., Catal.
Lett. 25, 21 (1994).
18. Ebitani, K., Konishi, J., and Hattori, H., J. Catal. 131, 257 (1991).
19. Iglesia, E., Soled, S. L., and Kramer, G. M., J. Catal. 144, 238 (1993).
20. Tanabe, K., and Yamaguchi, T., in “Successful Design of Catalysts,”
p. 99. Elsevier, Amsterdam, 1989.
CONCLUSION
21. Fujimoto, K., Maeda, K., and Aimoto, K., Appl. Catal. A 91, 81 (1992).
22. Misono, M., Catal. Rev. Sci-Eng. 29, 269 (1987); 30, 339 (1988).
23. Okuhara, T., Mizuno, N., and Misono, M., Advan. Catal. 41, 113
(1996).
24. Suzuki, S., Kogai, K., and Ono, Y., Chem. Lett., p. 699 (1984); Ono, Y.,
Taguchi, M., Gerile, Suzuki, S., and Baba, T., in “Catalysis by Acids
and Bases” (B. Imelik, C. Naccache, G. Coudurier, Y. Ben Taarit, and
J. C. Vedrine, Eds.), p. 167. Elsevier, Amsterdam, 1985.
25. Na, K., Okuhara, T., and Misono, M., J. Chem. Soc. Chem. Commun.,
p. 1422 (1993).
26. Okuhara, T., Nishimura, T., Watanabe, H., and Misono, M., J. Mol.
Catal. 74, 247 (1992).
27. Inui, T., Makino, Y., Okazaki, F., Nagano, S., and Miyamoto, A., Ind.
Eng. Chem. Res. 26, 647 (1987).
28. Lee, K. Y., Arai, T., Nakata, S., Asaoka, S., Okuhara, T., and Misono,
M., J. Am. Chem. Soc. 114, 2836 (1992).
29. Pines, H., in “The Chemistry of Catalytic Hydrocarbon Conversions.”
Academic Press, New York, 1981.
A
new bifunctional catalyst, Pt or Pd-promoted
Cs2.5H0.5PW12O40, was found to be efficient catalyst for the
skeletal isomerization of n-butane. At 573 K in the pres-
ence of H2, these heteropoly compounds were superior to
Pt-SO24ꢁ/ZrO2 and Pt-HZSM-5 with respect to the selec-
tivity. Over these heteropoly compounds, the bifunctional
mechanism has been proposed, on the basis of the little
dependence of metal loading level and the negative depen-
dence of the H2 pressure on the reaction rate. A unique role
of proton in the selective formation of isobutane has been
demonstrated. A probable interpretation is that protons
present near the metal particles interact with the interme-
diates for hydrogenolysis and direct them to isomerization.
By this, the selective isomerization proceeds over the bi-
functional heteropoly compounds.
30. Aston, J. G., and Szasy, G., J. Chem. Phys. 14, 67 (1946).
31. Chao, K., Wu, H., and Leu, L., J. Catal. 157, 289 (1995).
32. Okuhara, T., Nishimura, T., Na, K., and Misono, M., in “Acid-Base
Catalysis-II” (H. Hattori, M. Misono, and Y. Ono, Eds.), p. 419.
Elsevier/Kodansha, Amsterdam/Tokyo, 1994.
ACKNOWLEDGMENT
This work was partly supported by a Grant-in Aid for Scientific Re-
search from the Ministry of Education, Science, Culture, and Sports of
Japan.
33. Baba, T., and Ono, Y., Zeolite 7, 292 (1987).
34. Wan, K. T., Khouw, C. B., and Davis, M. E., J. Catal. 158, 311 (1996).
35. Adeeva, V., Lei, G. D., and Sachlter, W. M. H., Appl. Catal. A: General
118, L11 (1994).
REFERENCES
36. Zarkalis, A. S., Hsu, C.-Y., and Gates, B. C., Catal. Lett. 29, 235 (1994).
37. Cheung, T., D’Itri, J. L., and Gates, B. C., J. Catal. 151, 464 (1995).
38. Butler, A. C., and Nicolaides, C. P., Catal. Today 18, 443 (1993).
39. Moreno-Castilla, C., Porcel-Jime´nez, A., Carrasco-Marı´n, F., and
Utrera-Hidalgo, E., J. Mol. Catal. 66, 329 (1991).
1. Frischkorn, G. L., Kuchar, P. J., and Olson, R. K., Energy Prog. 8, 154
(1988).
2. Hino, M., Kobayashi, S., and Arata, K., J. Am. Chem. Soc. 101, 6439
(1979); Arata, K., Adv. Catal. 37, 165 (1990).