M = 314.46, monoclinic, a = 8.359(5), b = 13.505(4), c =
9.538(4) Å, β = 111.74(3)Њ, V = 1000.1(8) Å3, T = 150 K, space
group P21/a, Z = 2, µ(Mo-Kα) = 0.072 mmϪ1, 1841 reflections
measured, 1750 unique (Rint = 0.012). Final R1, wR2 on all data
(1750 reflections) 0.0725, 0.1209. R1, wR2 on [Io > 2σ(Io)] (1216
reflections) 0.0400, 0.1047.
55 (5), 43 (25), 41 (9.0); dimer 6: 355 (Mϩ Ϫ Me, 0.3%), 215 (5),
99 (45), 72 (7), 71 (100), 57 (11), 55 (7.0), 43 (33), 41 (12).
Acknowledgements
We thank Showa Shell Sekiyu KK, Shell Global Solutions and
the University of York for their support, Dr S. J. Archibald
for solving the crystal structure of meso-dineopentyl 2,3-
diethylbutanedioate and Dr H. Gillespie, Dr S. Bévière and
Dr S. Lawrence for very helpful discussions.
2-Bromobutanoic acid was prepared by heating a mixture of
butanoic acid (20 mmol), bromine (20 mmol), chlorosulfonic
acid (0.5 cm3) in dichloroethane (50 cm3) at 85 ЊC. After 2 h the
unreacted bromine and dichloroethane were removed under
vacuum and the residue was esterified with neopentanol and
a small amount of concentrated sulfuric acid in toluene.
The water was removed azeotropically with a Dean–Stark
apparatus. After the reaction, the toluene was washed with an
aqueous solution of sodium hydrogen carbonate, dried
(MgSO4), concentrated under vacuum and purified by flash
chromatography on silica gel, using dichloromethane as the
eluant, to give neopentyl 2-bromobutanoate in 55% yield;
δH(CDCl3) 1.15 (9H, s), 1.26 (3H, t), 2.35 (2H, m), 3.75 (2H,
s), 4.28 (1H, t); δC (CDCl3) 11.83 (–CH2CH3), 26.25
[(CH3)3C–], 28.35 (–CH2CH3), 31.53 [(CH3)3C–], 47.87
(–CHBrCH2CH3), 74.85 (–CH2O2C), 169.69 (–O2CCHBr);
MS(EI), m/z 223 (5%), 221 (5), 183 (85), 181 (85), 151 (73),
149 (73), 123 (75), 121 (75), 62 (100), 57 (98); MS(CI) m/z
References
1 Part 2. J. R. Lindsay Smith, E. Nagatomi and D. J. Waddington,
J. Chem. Soc., Perkin Trans. 2, 2000, 2248.
2 For example, M. Brown, J. D. Fotherington, T. J. Hoyes, R. M.
Mortier, S. T. Orszulik, S. J. Randles and P. M. Stroud, in Chemistry
and Technology of Lubricants, ed. R. M. Mortier and S. T. Orszulik,
Blackie, London, 1997, 2nd edn.
3 T. E. Karis, J. L. Miller, H. E. Hunziker, M. S. de Vries, D. A.
Hopper and H. S. Nagaraj, Tribol. Trans., 1999, 42, 431.
4 R. K. Jensen, S. Korcek, L. R. Mahoney and M. Zinbo, J. Am.
Chem. Soc., 1979, 101, 7574; E. J. Hamilton, S. Korcek, L. R.
Mahoney and M. Zinbo, Int. J. Chem. Kinet., 1980, 12, 577; R. K.
Jensen, S. Korcek and M. Zinbo, J. Synth. Lubr., 1984, 1, 91; V. N.
Bakunin and O. P. Parenago, J. Synth. Lubr., 1992, 9, 127; R. K.
Jensen, S. Korcek and M. Zinbo, J. Am. Chem. Soc., 1992, 114, 7742;
R. K. Jensen, S. Korcek and M. Zinbo, Int. J. Chem. Kinet., 1994,
26, 673; H. S. Aldrich, J. M. Cayce, K. E. Edwards, L. Gschwender,
K. U. Ingold, R. L. Paulson and C. Snyder, presentation at the
Society of Tribologists and Lubrication Engineers Conference,
Las Vegas, 1999; J. R. Lindsay Smith, D. J. Waddington, M. S. Stark,
P. W. Smith and E. D. Pritchard, presentation at Additives 2001,
Oxford, 2001.
5 J. R. Lindsay Smith, E. Nagatomi, A. Stead, D. J. Waddington and
S. D. Bévière, J. Chem. Soc., Perkin Trans. 2, 2000, 1193.
6 T. G. Brocksom, N. Petragnani, R. Rodrigues and H. La Scala
Teixeira, Synthesis, 1975, 396; J. Briggs, A. H. Haines, R. J. K.
Taylor, A. P. Dawson, I. Gibson, J. Hook, A. Lloyd and S. Meiners,
Carbohydr. Res., 1992, 234, 23.
ϩ
256, 254 (MNH4 ).
Mass spectral data for dimers from reactions of esters at 438 K
Ester 1 gave six dimers: MS(EI) m/z (relative intensities) A1: 314
(Mϩ, 0.03%), 227 (6), 157 (81), 129 (12), 88 (21), 87 (20), 71
(100), 57 (17), 55 (28), 43 (57), 41 (22); A2: 314 (Mϩ, 0.03%),
227 (7), 157 (85), 129 (10), 88 (12), 87 (10), 71 (100), 57 (17), 55
(29), 43 (65), 41 (23); B1: 314 (Mϩ, 1.0%), 227 (11), 157 (100),
129 (17), 128 (16), 88 (9), 87 (12), 71 (60), 57 (16), 55 (23), 43
(46), 41 (23); B2: 314 (Mϩ, 1%), 227 (12), 157 (100), 129 (22),
128 (16), 88 (11), 87 (12), 71 (63), 57 (17), 55 (22), 43 (45), 41
(22); C1: 314 (Mϩ, 3.5%), 227 (36), 198 (12), 157 (65), 129 (44),
111 (20), 71 (100), 57 (30), 55 (33), 43 (67), 41 (35); C2: 314 (Mϩ,
3.5%), 227 (36), 198 (12), 157 (65), 129 (45), 111 (20), 71 (100),
57 (30), 55 (33), 43 (68), 41 (35).
7 K. Y. Choo and S. W. Benson, Int. J. Chem. Kinet., 1981, 13, 833;
L. Batt and G. N. Robinson, Int. J. Chem. Kinet., 1982, 14, 1053;
A. Baignée, J. A. Howard, J. C. Scaiano and L. C. Stewart, J. Am.
Chem. Soc., 1983, 105, 6120.
8 Rate constants for abstraction of hydrogen atoms in hydrocarbons
and analogues by alkyl radicals in the liquid phase are scarce, but
sensible estimates can be made from the reliable data that are
available, e.g. K. Munger and H. Fischer, Int. J. Chem. Kinet., 1984,
16, 1213.
9 J. F. Seetula and I. R. Slagle, J. Chem. Soc., Faraday Trans., 1997, 93,
1709.
10 M. S. Kharasch, E. V. Jensen and W. H. Urry, J. Org. Chem., 1945,
10, 386; M. S. Kharasch, H. C. McBay and W. H. Urry, J. Org.
Chem., 1945, 10, 394; H. C. McBay, O. Tucker and A. Milligan,
J. Org. Chem., 1954, 19, 1003; S. A. Harrison, L. E. Peterson and
D. H. Wheeler, J. Chem. Soc., 1955, 349; G. A. Razavuov and L. S.
Boguslovskaya, Zh. Obshch. Khim., 1961, 31, 3440; A. Razavuov
and L. S. Boguslovskaya, Bul. Inst. Politeh. Iasi, 1962, 141.
11 M. Lazar, J. Pavlinec and Z. Movasek, Collect. Czech. Chem.
Commun., 1961, 26, 1380.
12 R. L. Huang, S. H. Goh and S. H. Ong, The Chemistry of Free
Radicals, Edward Arnold, London, 1974; J. M. Tedder and J. C.
Walton, Tetrahedron, 1982, 38, 313; J. M. Tedder, Angew. Chem.,
Int. Ed. Engl., 1982, 21, 401; B. Giese, Angew. Chem., Int. Ed. Engl.,
1983, 22, 753; M. J. Perkins, Radical Chemistry, Horwood,
New York, 1994; J. Fossey, D. Lefort and J. Sorba, Free Radicals in
Organic Chemistry, Wiley, Chichester, 1995; T. Zytowski and
H. Fischer, J. Am. Chem. Soc., 1997, 119, 12869.
Ester 2 gave four dimers: MS(EI) m/z (relative intensities) D1:
327 (Mϩ Ϫ Me, 1.0%), 285 (5), 201 (6), 199 (4), 184 (4), 171 (4),
85 (54), 57 (100), 41 (14); D2: 327 (Mϩ Ϫ Me, 1%), 285 (5), 201
(6), 199 (4), 184 (4), 171 (4), 85 (53), 57 (100), 41 (14); E: 327
(Mϩ Ϫ Me, 0.5%), 139 (9), 125 (6), 99 (52), 85 (30), 83 (19), 69
(18), 57 (100), 41 (17); F: 327 (Mϩ Ϫ Me, 2%), 285 (7), 171 (43),
125 (19), 113 (47), 85 (30), 71 (15), 70 (12), 69 (12), 57 (100), 43
(14), 41 (21).
Ester 3 gave six dimers: MS(EI) m/z (relative intensities), in
order of GC elution dimer 1: 355 (Mϩ Ϫ Me, 0.03%), 185 (11),
129 (9), 99 (100), 71 (14), 57 (46), 43 (12); dimer 2: 355
(Mϩ Ϫ Me, 0.03%), 185 (11), 129 (9), 99 (100), 71 (14), 57
(47), 43 (12); dimer 3: 355 (Mϩ Ϫ Me, 0.04%), 167 (18), 129
(10), 99 (100), 71 (17), 57 (50), 43 (12); dimer 4: 355
(Mϩ Ϫ Me, 0.04%), 167 (18), 129 (10), 99 (100), 71 (16), 57
(49), 43 (12); dimer 5: 355 (Mϩ Ϫ Me, 0.2%), 313 (5), 100 (8),
99 (100), 83 (7), 71 (9), 57 (47), 43 (8.0), 41 (6); dimer 6: 355
(Mϩ Ϫ Me, 0.3%), 313 (3), 100 (8), 99 (100), 83 (7), 71 (9), 57
(46), 43 (7), 41 (7).
Ester 4 gave six dimers: MS(EI) m/z (relative intensities), in
order of GC elution dimer 1: 355 (Mϩ Ϫ Me, 1.6%), 185 (33),
139 (14), 127 (19), 99 (34), 83 (22), 71 (100), 69 (30), 57 (27), 43
(48), 41 (23); dimer 2: 355 (Mϩ Ϫ Me, 1.6%), 185 (33), 139 (14),
127 (19), 99 (3), 83 (23), 71 (100), 69 (30), 57 (27), 43 (48), 41
(23); dimer 3: 355 (Mϩ Ϫ Me, 0.7%), 185 (39), 145 (10), 127
(32), 99 (22), 83 (16), 71 (100), 57 (18), 55 (13), 43 (38), 41 (17);
dimer 4: 355 (Mϩ Ϫ Me, 0.9%), 185 (35), 145 (10), 127 (32), 99
(20), 83 (17), 71 (100), 57 (18), 55 (12), 43 (38), 41 (17); dimer 5:
355 (Mϩ Ϫ Me, 0.2%), 215 (7), 99 (30), 72 (6), 71 (100), 57 (8),
13 G. M. Sheldrick, in Crystallographic Computing 3, ed. G. M.
Sheldrick and C. Kruger, Oxford University Press, 1985, 175.
14 P. T. Beurskens, G. Admiral, G. Beurskens, G. Bosman, W. P. Garcia-
Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, The
DIRDIF Programme System, Technical report of the
crystallography laboratory, University of Nijmegen, 1992.
15 G. M. Sheldrick, SHELXL97, Programme for crystal structure
refinement, University of Göttingen, 1997.
16 A. R. Costello, J. R. Lindsay Smith, M. S. Stark and D. J.
Waddington, J. Chem. Soc., Faraday Trans., 1996, 92, 3497.
J. Chem. Soc., Perkin Trans. 2, 2001, 1527–1533
1533