Angewandte Chemie International Edition
10.1002/anie.201710590
COMMUNICATION
In conclusion, the stability of residual oxides was
B. Roldan Cuenya, ACS Nano 2017, 11, 4825–4831.
1
8
18
investigated by O isotope labeling. O enriched oxide-derived
Cu catalysts were synthesized and CO R was performed with
them. The residual O content was then analyzed ex-situ with
[12]
H. Mistry, A. S. A. S. Varela, C. S. C. S. C. S. Bonifacio, I.
Zegkinoglou, I. Sinev, Y.-W. Y.-W. Choi, K. Kisslinger, E. A. E. A.
Stach, J. C. J. C. Yang, P. Strasser, et al., Nat. Commun. 2016, 7,
2
18
1
8
SIMS and it was found that only <1% of the original O content
remained in the samples. We therefore conclude that residual
oxides are unstable in our oxide-derived Cu catalysts during
12123.
[
[
[
13]
14]
15]
S. Lee, D. Kim, J. Lee, Angew. Chemie 2015, 127, 14914–14918.
C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465–469.
A. Eilert, F. Cavalca, F. S. Roberts, J. Osterwalder, C. Liu, M.
Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. M.
Pettersson, et al., J. Phys. Chem. Lett. 2017, 8, 285–290.
M. Favaro, H. Xiao, T. Cheng, W. A. Goddard, J. Yano, E. J.
Crumlin, Proc. Natl. Acad. Sci. 2017, 114, 201701405.
H. Xiao, W. A. Goddard, T. Cheng, Y. Liu, Proc. Natl. Acad. Sci.
2017, 201702405.
2 2 3
CO R. We believe that the high C /C product selectivity
exhibited by these catalysts is more likely due to a high density
of grain boundaries as previously proposed by Kanan and co-
[28,29]
workers
. We also show that these catalysts can rapidly
[
[
[
16]
17]
18]
reoxidize due, possibly, to the numerous grain boundaries
present in the material. The rapid reoxidation process could
compromise the accuracy of ex-situ methods for determining the
2
true oxygen content of the catalyst during CO R conditions.
I. Platzman, R. Brener, H. Haick, R. Tannenbaum, J. Phys. Chem. C
2
008, 112, 1101–1108.
L. Xu, Y. Yang, Z.-W. Hu, S.-H. Yu, ACS Nano 2016, 10, 3823–
834.
Acknowledgements
[19]
3
This material is based upon work performed by the Joint Center
for Artificial Photosynthesis, a DOE Energy Innovation Hub,
supported through the Office of Science of the U.S. Department
of Energy under Award Number DE-SC0004993, which
supported synthesis and electrochemical measurements. SIMS
analysis was supported by the Singapore Berkeley Initiative for
[20]
[21]
[22]
S. Matsnnaga, T. Homma, Oxid. Met. 1976, 10, 361–376.
C. Gattinoni, A. Michaelides, Surf. Sci. Rep. 2015, 70, 424–447.
K. Fujita, D. Ando, M. Uchikoshi, K. Mimura, M. Isshiki, Appl. Surf.
Sci. 2013, 276, 347–358.
[23]
Q. Zhu, L. Zou, G. Zhou, W. A. Saidi, J. C. Yang, Surf. Sci. 2016,
652, 98–113.
Sustainable
Energy
(SinBeRISE),
National
Research
[
24]
A. Paul, T. Laurila, V. Vuorinen, S. V Divinski, in (Eds.: A. Paul, T.
Laurila, V. Vuorinen, S. V Divinski), Springer International
Publishing, Cham, 2014, pp. 429–491.
Foundation (NRF) of Singapore. Y.L. acknowledges the support
of an A*STAR National Science Scholarship. The authors thank
Alan Wan from EAG Laboratories for SIMS analysis, Peter Zhao
for SEM analysis, and Prof. Thomas Devine for helpful
discussions.
[
[
25]
26]
F. S. Roberts, K. P. Kuhl, A. Nilsson, Angew. Chemie 2015, 127,
5268–5271.
M. Favaro, H. Xiao, T. Cheng, W. A. Goddard, J. Yano, E. J.
Crumlin, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 6706–6711.
C. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504–507.
A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J.
T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan, I.
Chorkendorff, J. Am. Chem. Soc. 2015, 137, 9808–9811.
X. Feng, K. Jiang, S. Fan, M. W. Kanan, ACS Cent. Sci. 2016, 2,
Keywords: CO
2
reduction • copper oxides • electrocatalysis •
[
[
27]
28]
oxide stability • isotope labeling
[
[
1]
2]
C. Graves, S. D. Ebbesen, M. Mogensen, K. S. Lackner, Renew.
Sustain. Energy Rev. 2011, 15, 1–23.
[
29]
Y. Hori, in Mod. Asp. Electrochem. (Eds.: C.G. Vayenas, R.E. White,
M.E. Gamboa-Aldeco), Springer New York, New York, NY, 2008, pp.
169–174.
8
9–189.
J.-P. Jones, G. K. S. Prakash, G. A. Olah, Isr. J. Chem. 2014, 54,
451–1466.
[
[
[
[
[
3]
4]
5]
6]
7]
1
K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ.
Sci. 2012, 5, 7050–7059.
K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T.
F. Jaramillo, J. Am. Chem. Soc. 2014, 136, 14107–14113.
D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B. S.
Yeo, ACS Catal. 2015, 5, 2814–2821.
M. Ma, K. Djanashvili, W. A. Smith, Angew. Chemie Int. Ed. 2016,
55, 6680–6684.
[
[
8]
9]
C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231–7234.
R. Kas, R. Kortlever, A. Milbrat, M. T. M. Koper, G. Mul, J.
Baltrusaitis, Phys. Chem. Chem. Phys. 2014, 16, 12194.
Y. Lum, B. Yue, P. Lobaccaro, A. T. Bell, J. W. Ager, J. Phys. Chem.
C 2017, 121, 14191–14203.
[
[
10]
11]
D. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse,
This article is protected by copyright. All rights reserved.