Please do not adjust margins
ChemComm
Page 4 of 8
DOI: 10.1039/C8CC03829E
COMMUNICATION
Journal Name
the valence states of Ni control the selectivity of CO
hydrogenation. Fig. 4a and b show the CO, H , CH , and CO partial
pressures during the CO+2H reaction on LaNiO
LaNiO is active for the further hydrogenation of the CO product;
both CO and H start to react at 525 K, and their pressures keep
decreasing with a simultaneous increase in the CH pressure. In
contrast, LaFe0.5Ni0.5 is inactive for CO hydrogenation in the
entire temperature range. The results confirm that CO is a key
intermediate for CO hydrogenation to CH and its reactivity is quite
different over LaNiO
2
Notes and references
2
4
2
1
S. Choi, B. I. Sang, J. Hong, K. J. Yoon, J. W. Son, J. H. Lee, B. K.
Kim and H. Kim, Sci. Rep., 2017, 7, 41207-41216.
2
3 3
and LaFe0.5Ni0.5O .
3
2
M. D. Porosoff, B. Yan and J. G. Chen, Energy Environ. Sci., 2016,
2
9
, 62-73.
4
3 F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D. G. Evans
and X. Duan, J. Am. Chem. Soc., 2016, 138, 6298-6305.
4 W. Lin, K. M. Stocker and G. C. Schatz, J. Am. Chem. Soc., 2017,
139, 4663-4666.
O
3
2
4
5
6
7
R. Zhou, N. Rui, Z. Fan and C.-j. Liu, Int. J. Hydrogen Energ.,
016, 41, 22017-22025.
W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev., 2011,
0, 3703-3727.
S. Kattel, W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu and J.
G. Chen, Angew. Chem. Int. Ed. Engl., 2016, 55, 7968-7973.
M. D. Porosoff and J. G. Chen, J. Catal., 2013, 301, 30-37.
Y. Liu and D. Liu, Int. J. Hydrogen Energ., 1999, 24, 351-354.
3
3
and LaFe0.5Ni0.5O .
2
DFT calculations were performed to correlate the binding energy
of CO with the product selectivity by using Ni(111) and NiO(111)
model surfaces simulating Ni oxidation states. According to
previous studies, the RWGS + CO-Hydro pathway with key
4
7
, 11, 12, 27, 28
intermediates of CO and CHO is employed.
The optimized
8
9
geometries and binding energies of CO and CHO species are shown
in Fig. S9 and Table S5 (ESI†), respectively. According to the RWGS + 10 H. C. Wu, Y. C. Chang, J. H. Wu, J. H. Lin, I. K. Lin and C. S. Chen,
CO-Hydro mechanism, the formed *CO either desorbs to produce
Catal. Sci. Technol., 2015, 5, 4154-4163.
gas phase CO or undergoes subsequent hydrogenation reaction to 11 T. K. Campbell and J. L. Falconer, Appl. Catal., 1989, 50, 189-198.
1
1
1
1
1
2 S. Kattel, B. Yan, J. G. Chen and P. Liu, J. Catal., 2016, 343, 115-
26.
3 S. Kattel, B. Yan, Y. Yang, J. G. Chen and P. Liu, J. Am. Chem. Soc.,
016, 138, 12440-12450.
4 S. Kattel, P. Liu and J. G. Chen, J. Am. Chem. Soc., 2017, 139,
739-9754.
5 C. Heine, B. A. Lechner, H. Bluhm and M. Salmeron, J. Am.
Chem. Soc., 2016, 138, 13246-13252.
6 R. V. Gonçalves, L. L. R. Vono, R. Wojcieszak, C. S. B. Dias, H.
Wender, E. Teixeira-Neto and L. M. Rossi, Appl. Catal. B:
Environ., 2017, 209, 240-246.
4
form CH . As shown in Fig. 4c the hydrogenation of *CO to *CHO on
1
Ni(111) has an activation barrier (Ea) of 1.78 eV, while the
formation of CO should overcome a desorption energy (Ed) of 1.93
eV, which is equal the BE of *CO on Ni(111). Such a strong binding
makes the desorption of *CO difficult and thus it is more favorable
2
9
4
for its further hydrogenation to *CHO and subsequently to CH . On
the other hand, the hydrogenation of *CO to *CHO on NiO(111) has
an Ea of 1.96 eV, while the Ed for CO is only 1.53 eV. Thus, the *CO
desorption is more favorable than its hydrogenation to *CHO on the
NiO(111) surface. Overall, the DFT calculations predict that the
NiO(111) surface should be more selective than Ni(111) for CO 17 B. Mutz, H. W. P. Carvalho, S. Mangold, W. Kleist and J.-D.
Grunwaldt, J. Catal., 2015, 327, 48-53.
production, consistent with the experimental results.
1
8 D. Neagu, T. S. Oh, D. N. Miller, H. Menard, S. M. Bukhari, S. R.
Gamble, R. J. Gorte, J. M. Vohs and J. T. Irvine, Nat. Commun.,
In conclusion, the combined in-situ experimental and
theoretical investigations have shown that by changing the
2015, 6, 8120.
valence state of Ni, the product selectivity of CO
hydrogenation can be tuned over lanthanum-iron-nickel
2
1
2
9 J. Deng, M. Cai, W. Sun, X. Liao, W. Chu and X. S. Zhao,
ChemSusChem, 2013, 6, 2061-2065.
0 R. Thalinger, M. Gocyla, M. Heggen, R. Dunin-Borkowski, M.
Grünbacher, M. Stöger-Pollach, D. Schmidmair, B. Klötzer and S.
Penner, J. Catal., 2016, 337, 26-35.
perovskites. LaNiO
3
shows high selectivity toward CH
4
3
,
.
whereas CO is preferentially formed on LaFe0.5Ni0.5
O
According to the in-situ XRD, XANES, and AP-XPS analysis,
metallic Ni is formed over LaNiO
while the Ni-related species present higher valence states in
. DFT calculations reveal that CO binds weakly on
NiO(111) where *CO desorption is more favorable over its
further hydrogenation to CH , leading to a much higher CO
3
under reaction conditions, 21 P. Steiger, R. Delmelle, D. Foppiano, L. Holzer, A. Heel, M.
Nachtegaal, O. Krocher and D. Ferri, ChemSusChem, 2017, 10,
2505-2517.
2 X. Liu, X. Liu, J. Meng, C. Yao, X. Zhang, J. Wang and J. Meng, Int.
J. Hydrogen Energ., 2016, 41, 22361-22372.
3 M. Burriel, S. Wilkins, J. P. Hill, M. A. Muñoz-Márquez, H. H.
Brongersma, J. A. Kilner, M. P. Ryan and S. J. Skinner, Energy
Environ. Sci., 2014, 7, 311-316.
4 L. Qiao and X. Bi, EPL (Europhysics Letters), 2011, 93, 57002.
5 A. M. Tarditi, N. Barroso, A. E. Galetti, L. A. Arrúa, L. Cornaglia
and M. C. Abello, Surf. Interface Anal., 2014, 46, 521-529.
6 L. Pino, A. Vita, M. Laganà and V. Recupero, Appl. Catal. B:
Environ., 2014, 148-149, 91-105.
LaFe0.5Ni0.5O
3
2
2
4
selectivity. This correlates well with the experimental results
that Ni-related species in higher valence states could produce
more CO. These findings establish new correlations between
the catalytic performance and structural properties of Ni-
based catalysts and provide catalyst synthetic strategies for
controlling the metal oxidation state to achieve the selectivity
2
2
2
2
in CO hydrogenation reactions.
This work was supported by the U.S. Department of Energy 27 T. Avanesian and P. Christopher, ACS Catal., 2016, 6, 5268-5272.
DOE, DE-SC0012704 and DE-AC02-05CH11231). Baohuai Zhao 28 T. Avanesian, G. S. Gusmão and P. Christopher, J. Catal., 2016,
(
343, 86-96.
acknowledges the financial support from the China Scholarship
Council (201606210159).
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins