RSC Advances
Paper
substituent is located at positions 6 and 8 (Fig. 5). The detailed
data are presented in Table 10 and the ESI (Tables S5–S9†).
Comparing the localization of the orbitals of 14, which
determine the optical properties, to the corresponding orbitals
of 12 and 13, did not show any differences, and the value for the
energy gap is 3.19 eV. The angles between the substituents for
the optimized structure are lower in comparison to molecules
3 J. Yang, L. Li, Y. Yu, Z. Ren, Q. Peng, S. Ye, Q. Li and Z. Li,
Mater. Chem. Front., 2017, 1, 91–99.
4 M. Fang, J. Huang, Y. Zhang, X. Guo, X. Zhang, C.-F. Liu,
W.-Y. Lai and W. Huang, Mater. Chem. Front., 2017, 1, 668–676.
5 Y. Niko, S. Sasaki, K. Narushima, D. K. Sharma, M. Vacha
and G.-I. Konishi, J. Org. Chem., 2015, 80, 10794–10805.
6 Y. Gong, K. Chang, C. Chen, M. Han, X. Zhan, J. Min, X. Jiao,
Q. Li and Z. Li, Mater. Chem. Front., 2019, 3, 93–102.
7 R. K. Konidena, K. R. Justin Thomas, M. Singh and J.-H. Jou,
J. Mater. Chem. C, 2016, 4, 4246–4258.
12 and 13, which can reveal that molecule 14 would exhibit
a higher quantum yield. Moreover, the results of the TD-DFT
calculations revealed that in the case of calculated absorption
spectra, the number of high energy absorption bands for 14 is
lower than for 12 and 13, whereas the emission spectra did not
differ to each other.
8 M. Jung, J. Lee, H. Jung, S. Kang, A. Wakamiya and J. Park,
Dyes Pigm., 2018, 158, 42–49.
9 D. Zych, A. Slodek and A. Frankowska, Comput. Mater. Sci.,
2
019, 165, 101–113.
0 R. Zhang, Y. Zhao, T. Zhang, L. Xu and Z. Ni, Dyes Pigm.,
016, 130, 106–115.
1
Experimental
2
Detailed information about the materials, methods, and 11 R. Zhang, T. Zhang, L. Xu, F. Han, Y. Zhao and Z. Ni, J. Mol.
synthesis of 8–13 is presented in the ESI.†
Struct., 2017, 1127, 237–246.
1
1
2 X. Liu, F. Tian, Y. Han, T. Song, X. Zhao and J. Xiao, Dyes
Pigm., 2019, 167, 22–28.
3 X. Feng, H. Tomiyasu, J.-Y. Hu, X. Wei, C. Redshaw,
M. R. J. Elsegood, L. Horsburgh, S. J. Teat and T. Yamato,
J. Org. Chem., 2015, 80, 10973–10978.
Conclusions
In conclusion, effective synthetic routes for the synthesis of
1,3,6,8-tetrasubstituted pyrene derivatives containing two kinds
of substituent groups, providing short axial symmetry or 14 D. Zych, A. Kurpanik, A. Slodek, A. Maro n´ , M. Paj ˛a k,
asymmetry, were developed. Furthermore, the conducted pho-
tophysical studies and theoretical calculations, when compared
to data for analogs with the same four substituents, exposed the
G. Szafraniec-Gorol, M. Matussek, S. Krompiec, E. Schab-
Balcerzak, S. Kotowicz, M. Siwy, K. Smolarek, S. Ma ´c kowski
and W. Danikiewicz, Chem.–Eur. J., 2017, 23, 15746–15758.
legitimacy of research dedicated to the compounds with two 15 D. Zych, A. Slodek, D. Matuszczyk and S. Golba, Eur. J. Inorg.
kinds of substituent units, especially the compounds with Chem., 2018, 47, 5117–5128.
a substitution pattern that provides axial symmetry (13), which 16 D. Zych, A. Slodek, S. Golba and S. Krompiec, Eur. J. Inorg.
determines more efficient uorescence. Moreover, the theoret- Chem., 2018, 14, 1581–1588.
ical study of the analog for which the synthesis is nontrivial 17 J. Grimshaw and J. Trocha-Grimshaw, J. Chem. Soc., Perkin
showed that compounds with this kind of substitution pattern Trans. 1, 1972, 1622.
would follow the trend of derivatives with short axial symmetry. 18 M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb,
The results also showed that the examined compounds exhibit
interesting properties which can predestine them as potential
materials for organic electronics, which will be the subject of
our further investigations.
J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian,
A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd,
E. Brothers, K. Kudin, V. Staroverov, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J. Burant,
S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene,
J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi,
C. Pomelli, J. Ochterski, R. Martin, K. Morokuma,
V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg,
S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz,
J. Cioslowski and D. Fox, Gaussian 09, Revis. B.01, Gaussian,
Inc., Wallingford CT.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
This work was supported by the Ministry of Science and Higher
Education, Poland Diamentowy Grant number 0215/DIA/2015/
44. D. Zych was nanced by the National Science Centre of
Poland, ETIUDA 6 2018/28/T/ST5/00005. Calculations were
carried out using resources provided by Wroclaw Centre for
Networking and Supercomputing (http://wcss.pl), Grant no. 18. 19 K. R. Idzik, P. J. Cywi n´ ski, W. Kuznik, J. Frydel, T. Licha and
T. Ratajczyk, Phys. Chem. Chem. Phys., 2015, 17, 22758–
2
2769.
Notes and references
2
0 R. Nandy, M. Subramoni, B. Varghese and S. Sankararaman,
1
2
D. Zych, Molecules, 2019, 24, 2551.
M. M. Islam, Z. Hu, Q. Wang, C. Redshaw and X. Feng, Mater. 21 Z. Zhao, X. Xu, Z. Jiang, P. Lu, G. Yu and Y. Liu, J. Org. Chem.,
Chem. Front., 2019, 3, 762–781. 2007, 72, 8345–8353.
J. Org. Chem., 2007, 72, 938–944.
24024 | RSC Adv., 2019, 9, 24015–24024
This journal is © The Royal Society of Chemistry 2019